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A recent experiment on the directional solidification of liquid crystals has exhibited traveling
waves. In this Brief Report we present numerically obtained solutions for these traveling waves by
generalizing the methods previously employed to look for steady-state patterns. The results agree
with our earlier predictions based on a stability analysis and complete the bifurcation diagram for

the system at hand.

Recently, Simon, Bechhoefer, and Libchaber! have re-
ported various new instabilities in the directional
solidification of liquid crystal. Among other things, they
observed solitary inclusions which propagate through the
stationary cellular pattern. In fact, these traveling-wave-
like patterns have been observed in eutectic
solidification,? convection cells,® and other systems as
well.

Coullet et al.* have provided a natural explanation for
these propagating inclusions. Crucial to their argument
is the existence of a parity-breaking bifurcation which
breaks the reflection symmetry of the original steady-
state pattern, and thereby gives rise to traveling wave
states. In the case where such a bifurcation is subcritical,
kinks connecting the reflection symmetric with the asym-
metric state can arise. The resulting kink-antikink pair
exhibits all the qualitative features of the experimentally
discovered inclusion.

Riecke and we’ have explained the observed states
from a different point of view. Near the codimension two
point, i.e., where both the g and 2¢q modes become unsta-
ble, one can write the following set of amplitude equa-
tions for the amplitudes for the ¢ mode (z,) and the 2gq
mode (z,) (the ellipsis stand for higher-order terms):
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The pattern (interface position) z is given in terms of the

. iq  x 2ig x
complex amplitudes z, and z, by z=ze “ +z,e ¢
+c.c.+ -+, and the coefficients appearing in these
equations are related to the control parameter v and the
wave number gq.

In Ref. 5 we have discussed in detail the bifurcation di-
agrams resulting from Egs. (1) and (2). These bifurcation
diagrams exhibit all the experimentally observed states
and explain quite naturally the traveling-wave state. We
also presented numerically obtained solutions for the
three steady-state branches: We found two ‘“‘mixed”
modes, i.e., states with both z, and z, nonzero (which we
called S_ and S, ), and a pure period-doubled solution
S,, with only z,. We argued there that the traveling-
wave branch would start at exactly the location of the
parity-breaking instability, which was subsequently found
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numerically, using the methodology of Ref. 6. In this pa-
per we complete this picture by presenting an explicit cal-
culation of the (finite-amplitude) traveling-wave states
that occur in this system.

Let us first describe the basic equations of directional
solidification’ in the presence of a nonzero velocity in the
transverse (x) direction. We assume that the alloy is
characterized by the standard phase diagram (see, for ex-
ample, Kessler and Levine®). In both the liquid and the
solid phase (for the liquid-crystal case this is the nematic
and isotropic case), the concentration field obeys the
diffusion equation

D, Vi = %j— ,
where D, is the diffusion constant in the liquid or the
solid. The concentration far away from the interface, ¢,
is fixed for each experiment. Local thermodynamic equi-
librium requires that the temperature is the same on both
the liquid and the solid sides of the interface. From the
phase diagram we have

(3)

oy
Ts=Ty—csms, To=Ty—com; ,

where m; (m;) and ¢, (c;) are, respectively, the slope
dT /dc in the solid (liquid) phase and the concentration
on the solid (liquid) sides of the interface. TM is the melt-
ing temperature for the pure material (¢ =0) and has a
Gibbs-Thomson shift due to the curvature «:
?M=TM(1“d0K), where the capillary length d,, can be
expressed in terms of the surface energy o and the latent
heat L: dy=o0 /L. Here we have neglected any possible
dependence of d, on the angle between the interface nor-
mal and the crystal axes.

The final boundary condition follows from the conser-
vation of matter,

—"U"(CL_Cs)=DL(ﬁ’VC)L_Ds(ﬁ'vc)s ) (4)

where v, is the normal velocity: v, =(Uf+vf)1/2. In the
case of a directional solidification experiment the temper-
ature is imposed externally. For convenience let us
choose

T(y)=Ty+G, , (5)
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so that at y =0 we have T =T,.

To cast the equations in their final form, we go to the
moving frame, moving with velocity v=(v,,v,), rescale ¢
by ¢, and rescale the lengths by the diffusion length
v, /2D, . Then the equations read

2D, .
Vi + . v-Vc =0 (liquid) ,
y
D,
aVic + v-Ve =0 (solid),

Uy

(6)
(f-Ve)p —a(@i-Ve)g=—2(1—k)c, A, ,

s_—y_

& £ YK,
where k =m; /mg, a=Dgs/D;, y=vdyTy /2D, m;c,
and {=vm;c, /2D; G.

To derive the integro-differential equation, let ¢; be
equal to ¢ everywhere in the liquid and zero in the solid.
Let ¢, be the same with the solid and liquid reversed.

1 —ply—y)—(v,/2)(x —x'+2n)
—e

G,
. 4P

and there is an analogous expression for Gg. Note that p,
the Peclet number, is defined solely with the § velocity:
p =v,A/4D . Throughout this paper we take a=1, for
which Egs. (7) reduce to the single equation

=1+ [(1—k)—y/E—yK)@"-V'G)ds" . )
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Ko((p?+v}/4) 2[(x —x"+2n)+(y —p'?]') ,

TABLE I. Parameter values of the liquid-crystal system used
in the numerical calculation.

dy =2X107% cm
G =233 K/cm
Ty—313.65 K
m; =1°/mol %

o —1.2 mol %

D, =3.8X107°% cm/s?
D, =D,

k =0.88

From Egs. (6) and the boundary condition ¢ —1 at «, we
can write

=1+ [c,8" VG, — [ G4, ,

¢,= [csai"-VGs— [ Gso, @

where the liquid-phase Green’s function is

(8)

The computational procedure consists of parametriz-
ing the (unknown) boundary (x =0 to x =A) with 2N
points of equal arclength separation. As our independent
variables we take the normal angle fi-§=cos0 defined on
the midpoints of the sections of equal arclength. The ad-
ditional independent variables are the position of the cell,
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FIG. 1. A typical traveling-wave pattern.
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FIG. 2. The numerically obtained bifurcation diagram, with the steady-state branches S, S_, and S,, and the traveling-wave
(TW) branch. z, is the amplitude of the 2g mode. Stable branches are represented by dashed lines and unstable branches by dotted

lines.

Yo, and the velocity in the x direction, v,. Therefore, we
need 2N +1 equations to describe the system. We have
2(N —1) equations from the integral equations on the
points of equal arclength excepting the interval end-
points. In addition, we require that the position to the
endpoints are equal, i.e., y (0)=y (N), and that the slope
vanishes at both the tip and the tail.

It is worth pointing out that an explanation as to why a
parity-breaking bifurcation gives rise to a traveling wave
can be given in a natural way if we consider the counting
of variables and equations. The basic point is that
translation invariance in the X direction must be broken
by the computational procedure, so as to be searching for
a unique solution. This has been done above by demand-
ing that the slopes at the endpoint not only be continuous
but also equal to zero This leaves us with one more equa-
tion than variables, and hence necessitates the introduc-
tion of the velocity in the x direction as an extra un-
known.

The resulting 2N + 1 nonlinear equations were iterated
by using Newton’s algorithm, following the procedure
discussed in Ref. 8. In our program we used the CLAMS
routine DNSQE with an absolute accuracy of 1073, The
number of discretization points used was 50. We applied
this methodology to a system with material parameters
given in Table 1. These are mostly based on the actual
experiment of Simon et al., with the exception of the use
of a larger diffusion constant. This should not have a ma-
jor qualitative effect on any of the results reported here.

In Fig. 1, we show a typical traveling-wave pattern
with, in this case, a nonzero velocity in the negative x
direction. In fact, there exists a simple check of our pro-
gram since the result should be antisymmetric under
reversing the velocity. Indeed, we have found a solution
with the same velocity, but now in the positive x direc-
tion, which is the reflection of Fig. 1 about its endpoint.

Figure 2 shows a complete branch of traveling waves
for the system described in Table I. We have plotted the
amplitude of the 2¢ mode z, versus the wave number gq.
In addition to the already-found steady-state solutions
S_,S,,and S,,’ we are now able to connect the steady-
state branches with a traveling-wave branch. This bifur-
cation diagram is in agreement with our earlier work.
There we predicted the existence of a traveling wave aris-
ing from a stability analysis. The velocities for which the
traveling wave bifurcates off the steady-state branches
S_ and S, correspond exactly with the predicted values.
Note that the traveling-wave branch turns around before
it merges with the S_ branch. However, since the S _
branch is unstable, this is in some sense unphysical. The
branch does not turn around when it merges with the S |
branch indicating a supercritical bifurcation.

In summary, we have explicitly found the existence of
traveling waves in directional solidification. The points
at which these states appear are correctly predicted by
the stability analysis of Ref. 5. This fact enabled us to
efficiently find these nonlinear patterns in (enormous) pa-
rameter space.




7478

1A. Simon, J. Bechhoefer, and A. Libchaber, Phys. Rev. Lett.
61, 2574 (1988).

M. Rabaud, S. Michalland, and Y. Couder (unpublished).

3G. Faivre, S. de Cheveigne, C. Guthmann, and P. Kurowski,
Europhys. Lett. 9, 779 (1989).

4P. Coullet, R. E. Goldstein, and G. H. Gunratne, Phys. Rev.
Lett. 63, 1954 (1989).

SH. Levine, W.-J. Rappel, and H. Riecke, Phys. Rev. A (to be

BRIEF REPORTS 42

published).

6D. Kessler and H. Levine, Phys. Rev. A 41, 3197 (1990).

TFor a review, see, e.g., D. A. Kessler, J. Koplik, and H. Levine,
Adv. Phys. 37, 255 (1988); J. Langer, in Chance and Matter,
edited by J. Souletie, J. Vannimenus, and R. Stora (North-
Holland, Amsterdam, 1987).

8D. Kessler and H. Levine, Phys. Rev. A 39, 3041 (1989).



