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We investigate numerically the existence of steady cellular patterns during step-flow growth.
Using an integrodifferential method we determine the cellular shapes arising after the straight step
has become unstable. We discuss the most general model for a train of steps, in which the step
adatoms have finite sticking coefficients, and its restrictions, such as an isolated step in the one-sided
model. We find, depending on the material parameters, a supercritical or subcritical bifurcation to
a cellular profile. When the sticking coefficients of adatoms from both the upper and lower terraces
are finite but different (the so-called Schwoebel effect), we find that the depth of the cells increases
significantly. Since the visualization of the cellular depth is by now accessible, the present analysis
constitutes an important basis for experimental investigation on the role of the adatoms’s kinetic

attachment to the step.

L INTRODUCTION

The physics of crystal-growth processes by modern
techniques such as molecular beam epitaxy (MBE) has
been a subject of intense research in the past decades. In
particular, as sophisticated detection techniques become
available, the problem of layer growth has received con-
siderable attention. These techniques have demonstrated
that the growth during MBE, e.g., can be achieved mono-
layer by monolayer. This results in terraces separated by
monoatomic steps with atoms diffusing on the terraces.

The problem of such a step flow was discussed in a
paper by Burton, Cabrera, and Frank.! They discussed
the case of straight steps and spiral steps. Subsequent
work refined this analysis, but was mainly confined to
these two special geometries. However, as experimen-
tal studies have demonstrated, the terrace edges display
quite often a wavy nature.®* It was shown by Bales and
Zangwill? (from now on referred to as BZ), by perform-
ing a linear stability analysis of the straight step, that the
step can exhibit a morphological instability, much like the
so-called Mullins-Sekerka instability in crystal growth.®
Depending on the material parameters such as the line
tension, the straight step moving steadily at a constant
speed is stable or unstable. In the latter case, one could
expect to see wavy terrace edges during the growth of
the monolayer.

As the straight step becomes unstable, nonlinear ef-
fects quickly intervene in the growth dynamics. Bena,
Misbah, and Valance®” performed a weakly nonlinear
analysis of the model equations of step flow near the
threshold of the instability for the one-sided model (i.e.,
complete blocking from the upper terrace). The result
is a Kuramoto-Sivashinsky-type equation which exhibits,
among other possible step profiles, periodic cells. In
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Ref. 6 a tentative description of the interaction of steps
was discussed. That approach is, however, only valid
near the threshold of the instability (see also below). It
seems logical to extend this analysis to a fully nonlinear
one, i.e., taking into account the full set of equations,
and to discuss more general cases than a single step in
the one-sided model.

In this paper we will therefore investigate the station-
ary cellular shapes which can appear after the instability
of the straight step. The numerical technique we use
consists of rewriting the equations in a set of integro-
differential equations, discretizing these equations into
a set of coupled nonlinear equations for the step profile
and other unknowns and solving this set using Newton’s
method. This method has been proven to be extremely
successful in other fields of growth problems such as the
Saffman-Taylor finger,® eutectic growth,® and directional
solidification.10-1?

The paper is organized as follows: in Sec. II we will
discuss the model and its equations. In Sec. III we will
review the linear stability problem in BZ. Section IV
describes briefly our numerical method. Section V dis-
cusses the “easiest” case: an isolated step in the one-sided
model. In Sec. VI we discuss the one-sided model for a
train of steps and Sec. VII deals with a train of synchro-
nized steps with finite sticking coefficients of adatoms.
We conclude with a discussion and outlook in Sec. VIII.

II. DESCRIPTION OF THE MODEL

In this section we will describe the model for step flow
we have studied. This model is essentially the same as
discussed by BZ and Bena, Misbah, and Valance.® It con-
sists of a set of steps separated by terraces of width [
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on which the adatoms impinge and diffuse (see Fig. 1).
There is a constant flux F and a constant evaporation
rate, characterized by an evaporation time 7. If an
adatom arrives at a step it has a certain probability of
attaching to this step described by the rate constants k.
(for the atoms arriving from the lower terrace ) and k_
(for the atoms arriving from the upper terrace).

Thus, the concentration of adatoms c obeys the diffu-
sion law with a flux term F' and a term representing the
evaporation

@=DAC—C/T+F, (1)
ot

where D is the diffusion constant, F' is the flux (adatoms
per time), and 7 is the evaporation lifetime. The steps
are supposed to move with a constant velocity V in the
z direction. We will go into the frame moving with this
velocity and, since we will be interested in stationary
shapes in this paper, we will set % = 0.12 On the step,
we have to satisfy two boundary conditions. The first
one describes simply the conservation of adatoms at the
steps which are advancing with a normal velocity v,,

vpAcs, = D[ - Ve|p —h- Ve|_]. (2)

Here, and in the remainder of the paper, a plus sign indi-
cates the lower side of a step and a minus sign indicates
the upper side of a step (see Fig. 1). Ac, is the difference
between the areal density of atoms in the solid phase and
the corresponding quantity on the terrace adjacent to a
step. Since the atomic density of the gas is much lower
than in the solid we can take Ac, ~ 1/Q, where Q2 is the
atomic area of the solid. fi is the normal pointing out of
the solid into the gas phase of the lower neighboring ter-
race. Note that both terraces contribute to the growth.
If we take z = ((z,t), as the instantaneous position of
the step, we can write for the normal velocity

v = [V + {(z,t)|n,. (3)

Of course, for stationary fronts C (z,t) = 0 and we can
rewrite Eq. (2) as

Vi, = (V, + V)i = O[3 Ve, —a- Vel . ()

The second boundary condition is a Gibbs-Thomson
relation which describes the evaporation of atoms from

FIG. 1. A schematic view of a set of terraces during
step-flow growth. The atoms are deposited by a constant flux
F and evaporate with a rate ¢/7. They diffuse on the terraces
of width ! and the attachment at the steps is described by the
rate constants k4 and k_.
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convex parts of the step and the attachment of the atoms
to concave parts. It is this boundary condition which
stabilizes the step for small wavelength perturbations.
This relation for the concentration in equilibrium with
the step at position s can be written as®

Caq(8) = coq[1 + T'r(s)], (5)

where I' = vQ/kpT, with ~ the line tension, kg Boltz-
mann’s constant, and 7' the temperature. k(s) is the
curvature of the step, defined to be positive for a convex
profile:

K= —Con/ (1422, (6)

In the model of Ref. 1 the steps acts as perfect sinks
and we have c(s) = ceq(s). However, there are kinetic
barriers for the incorporation of atoms in the steps. The
probability of attachment to a step is described by the
following first-order reaction kinetics for the step veloci-
ties V4 (Ref. 3)

Va(s) = Qk[c(s) — ceq(s)]- (7)

Combining these expressions with the conservation of
adatoms [Eq. (2)] gives us

k+[c(s) — ceq(s)] = Dl - Ve, (8)
k_[c(s) — ceq(s)] = —Di- Vc|_. (9)

Finally, if the step is isolated we have
c(z - o00) = 7F, (10)

which describes the equilibrium between evaporation and
deposition.

Note that the limit k_ = 0 corresponds to the case of
complete blocking from the upper terrace: the adatoms
coming from the upper terrace cannot attach to the step.
One can show that this is the maximally unstable case
and that for k- > k4 (i.e., atoms arriving from the
lower terrace are less likely to bond) the steps are always
stable.?

ITI. LINEAR STABILITY ANALYSIS

A first step in general for problems such as the one
dealt with in this paper is a linear stability analysis of
the elementary solution. In the case of step flow, the ele-
mentary solution is a straight step moving at a constant
speed. We will briefly review the linear stability analysis
in BZ, using their original notation. This means that we
will introduce the variables w = ¢ — 7F and dy = D /ky
so that the Eq. (1) becomes

2 w
Viw 7z 0 (11)
with z, = v D7. The diffusion field associated with the
straight step is given by

wo(z) = Ae™*/®+ 4 Be*/®e. (12)

A and B can be found by substituting wo in the boundary
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conditions [Egs. (8)—(9)] for w at z =0 and at z = . To
find the stability of this solution one perturbs as usual
the straight step and the field w with a small sinusoidal
perturbation with wave number ¢ and growth rate w:

w(z, 2,t) = wo(z) + (wip(2)ee® + wypy,(2)e Aa%)e?,
(13)
((2,t) = Gre't=e (14)

where A, = 1/q? + 1/22 and (1, Wim, and wy, are taken
to be small. We plug this into our boundary condi-
tions and expand around the straight-step solution. Af-
ter some tedious algebra one finds a dispersion relation
for the growth rate w. A positive w means that the ini-
tial perturbation will grow in time and thus an unstable
straight-step solution while a negative w means a stable
straight step.

The dispersion relation we obtain differs slightly from
the one obtained in BZ. Their final result [Egs. (18)—(20)
in Ref. 2] contains a misprint. Indeed it does not have
the right dimensions and does not yield w = 0 in the limit
I — 0. The correct expression for w(q) is

w(q) = g(q) — ¢*f(q), (15)

where

f(a)

_ TQDAg{2[cosh(Agl) — 1] + Aq(dy + d_)sinh(A,l)}
~ Ag(d4 +d-)cosh(Agl) + (1 + dyd_AZ)sinh(A,l)

and
9(q) = QF — Feq)(d— — d4)G(q), (16)

where G(q) is the same lengthy expression as Eq. (20) in
Ref. 2. In Fig. 2 we show the linear stability curve for
some typical parameter values. We see that the straight
step is unstable over a range of wave numbers 0 < ¢ < g,
and stable for ¢ > ¢..

The expressions f(q) and G(q) are both positive def-
inite, which means that step flow is absolutely stable if
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FIG. 2. The linear stability curve w(g) for some typical
parameter values. The straight step is unstable for 0 < ¢ < gc.
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d; > d_. BZ have introduced a length scale ¢ which is a
combination of the line tension and the flux of particles:

T'Feq

£= (F_Feq)’

(17)

where Feq = ¢2,/7. For d;. < d_ step flow is unstable for
£ smaller than a certain critical value {.. By expanding
w(q) around g = 0 one can show that

32a(d- —dy)
zs(d— + dy)coth(l/z,s) +d_dy + 22

& = (18)

Note that for an isolated step in the one-sided model we
have £, = % The weakly nonlinear expansion in Ref. 6
was performed around this critical value of £.

IV. NUMERICAL METHOD

In this section we will briefly describe a way to solve
the equations presented in Sec. II. Contrary to the earlier
work of Bena, Misbah, and Valance,® this approach does
not constitute an expansion around some critical parame-
ter and thus a weakly nonlinear expansion, but takes into
account the full set of equations. This approach has been
applied to various other problems of pattern formation.
In particular, directional growth has been studied inten-
sively with this method. For a more detailed description
of the numerical method we refer to Ref. 10.

We have found it convenient to perform a rescaling of
our variables. Therefore, we introduce u = Q(c—7F) and
we rescale lengths by ;. We can then write the following
set of equations:

Viu—u=0 (19)
with bou}ldary conditions at z = ((z,t) and at z =
C(=,t) +1,

A -Vu_ =—[u_+A-Tk)/d_, (20)
f-Vu, =Pn, —[u_+A —Tk]/d_, (21)

uy =dyPn, —diJu_ + A—Tk]/d_ — A +Tk, (22)

where | = l/z,, T' = /z,, P = Vx,/D is a Péclet num-
ber,d+ = di/z,,and A = T(F —Feq)2. These boundary
conditions can be found from Egs. (4)—(9) by solving for
u_. For the sake of notational simplicity we will drop
from now on the tildes on the variables and all the vari-
ables should be understood as being rescaled.

Our method consists of transforming the equations into
integro-differential equations over the (unknown) bound-
ary. To be more precise, we can write, using Green’s
theorem, for the field u at any point s on the terrace,

u(s) = / A’ - V'G(s, s )u(s')ds’
boundaries

—-/ G(s,s")ft' - V'u(s')ds'. (23)
boundaries

Here, the integrals are over the step and the normal is
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pointing into the region of integration. G is the Green’s
function, satisfying

V3G - G = -§(s—§). (24)

The region of integration is bounded by the terrace
at z(z) = ((x) and 2(z) = {(x) + ! and is assumed to
be infinite in the z direction. We can make use of the
periodicity of the step profile (i.e., the profile has cells
which are repeated in the = direction over a wavelength
A). We can then write for the Green’s function

+oo
Gss)= 3 %Ko[\f(w—w’+2n)2+(y—y')2],

n=—oo

(25)

where Ky is the modified Bessel function of order zero.
We will terminate the sum if the contribution (relative
to the total sum) from the next term is less than some
specified value, typically of the order of 1078.

We evaluate the above expression at the lower (+) side
of the terrace (at z = ¢) and at the upper (—) side of a
terrace (at z = ( +1). Note that because we consider the
case where the steps are synchronized, the upper side
of the terrace at z = ( — 0% is equivalent to that at
z = ( 41— 0%. The resulting expressions are

uy(s) = / A’ - V'G(s, s\ uy (s')ds
+
—/ G(s,s" )" - V'u,(s')ds’
+
— / i’ - V'G(s,s)u_(s')ds'

+ [ Glasa Va2

u_(s) = L i V'G(s, s'Yu_(s')ds’
_ /_ G(s, s )i - V'u_(s')ds’
—Lﬁ' -V'G(s, 8" )uy(s)ds'

+ / G(s,s')&' - V', (s')ds, (27)
.+.

where [, and [_ stand for the integration over ((z) and
{(z) + , respectively. The next step is to substitute the
values of u, i-Vuy and fi- Vu_ at the terraces into the
equations above. Since we have written all the boundary
conditions in terms of u_, the final equations consist of
two integro-differential equations with, as yet unknown,
the value of the field u_(s) at the step, the Peclet number
P, and the step profile itself.

Since the step profile is translational invariant over A
in the = direction and since we look for symmetric cells
which have a reflection symmetry with respect to the line
x = A\/2, we take the width of our computational box to
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be A/2. In other words, we will only calculate half the
cell. By changing the width of our computational box we
are varying the wavelength.

The step profile is discretized by the N angles between
the normal to the step and the unit vector in the z di-
rection. We finally end up with a set of 2N + 2 cou-
pled nonlinear equations for the N step profile angles,
the Péclet number P, and u_(s) (at NV + 1 positions at
the interface) solved using a standard Newton solver with
a typical tolerance of 10~°. The number of discretization
points was typically taken to be 40 with occasional runs
for a discretization rate of 60.

In the following sections we will discuss some special
cases of step flow, such as the one-sided model and a
single isolated step. These cases simplify greatly the
above expressions and are easier to handle. However,
in Sec. VI we give an example of a cellular structure in
the full model.

V. ISOLATED STEP
FOR THE ONE-SIDED MODEL

In this section we discuss the case of an isolated step
for the one-sided model. In this case, the upper terrace
does not contribute to the growth of the step; - Vu_ =
0. To obtain the dispersion relation we should take the
following limits in the general relation for w:

Il = oo, (28)
d_ — oo, (29)
dy — 0. (30)

The dispersion relation reduces to the much simpler one
(in the unscaled version):

w = —TQDALG + QF — Foq)[Agz, — 1]. (31)

The integro-differential equation reduces to a simple
single equation:

_A+Tk(s) = / [& - V'G(s, )] [~ A + T(s")]ds’
—/G(s,s')Pn'zds'. (32)

We solve this for the unknown step profile and the
Péclet number P. We can perform several tests on our
program. First of all, we should always find a straight-
step solution with a Péclet number given by P = A.
Furthermore, the dispersion relation above [Eq. (31)] pre-
dicts a critical wave number at which the amplitude of
the cellular structure goes to zero. The program typi-
cally finds this critical wavelength within less than 1%
for a discretization of 60 points.

Having satisfied all the tests, we have looked for cel-
lular solutions. Since the straight-step solution exists
everywhere in the parameter space, we cannot a priori
prevent the Newton-Raphson method from converging to
that solution (in which we are not interested). If the ini-
tial guess is not close enough to the cellular solution we
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want to investigate, the zero solver often does converge
to the trivial solution. To circumvent this problem we
use the following trick. We relax one condition, say at
the end of the cell (which consists of imposing a zero
slope), and replace this condition by one which forces a
nonzero amplitude for the step profile. By looking for
a zero crossing of the slope at the end point when one
varies this amplitude one can find a solution. Once we
have found a cellular solution, we can use this one as an
initial guess and progressively vary the parameters in a
certain desired direction.

In this paper we have varied I', while we have taken
A to be (arbitrarily) equal to 1. As shown by BZ the
straight-step solution loses its stability if I'/A < 1/2 (for
an isolated step). When this condition is met, the ini-
tially straight step is to bifurcate into another type of
solution, to be determined below. Since the parameters
I" and A are related at the bifurcation by the condition
I'/A = 1/2, what matters when we measure the distance
from the bifurcation point is this combination of param-
eters and not each separately. Therefore in the chosen
units, I' = 1/2 is the critical point. We first investigate
the cellular solution close to the bifurcation point. In
Fig. 3 we have plotted a typical step profile for I' = 0.4.
In Fig. 4 we have plotted the amplitude A scaled with
the critical wavelength A. of the cell as a function of the
reduced wavelength, defined as (A — A;)/A.. We see that
the amplitude goes continuously to zero at the critical
value A. (which we have checked to be within 1% of the
predicted value A, = 10.76). This continuous type of bi-
furcation is known as a supercritical or forward bifurca-
tion. At this bifurcation point the straight step will lose
its stability to the cellular structure. Note that the cell
is quite shallow. We observe in Fig. 4 that the amplitude
takes on a maximum approximately at the wavelength
where the growth rate obtained in the linear stability
analysis [see Eq. (31)] is maximum. When X\ approaches
the value 2\, [or when (A — A;)/A. ~ 1 in Fig. 4] the

0.8 . r ; —r
0.6 i
§<”04 ]
0.2 ,
00 i . L n
0 5 10 15 20 25
X/x

s

FIG. 3. Cellular structure for an isolated step in the
one-sided model (I' = 0.4, Ac = 10.76). We have plotted
two complete cells, but note that it is sufficient to calculate
just one half-cell.
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FIG. 4. The amplitude of the cells as a function of the
reduced wavelength for an isolated step in the one-sided model
for T' = 0.4. The dashed line is the branch for 2A.

second harmonic becomes more and more dangerous. As
a consequence the solution branch with A as a basic pe-
riodicity ceases to exist when (A — A.)/A; ~ 1, whereby
A/2 periodic solutions merge. That is to say, each cell
(of the A family) splits into two identical cells. As ex-
pected, these results are those captured numerically and
analytically®” from the Kuramoto-Sivashinsky equation.
More precisely, the bifurcation obtained from the analyt-
ical work is also supercritical, and the branch solution ex-
hibits the same period-halving scenario at approximately
the same wavelength.

However, if we decrease the value of ', and thus of £, we
find that the nature of the bifurcation changes. Instead
of a supercritical bifurcation we now have a subcritical
one. In Fig. 5 we have plotted A/A; for I' = 0.1 as a
function of (A — A;)/A.. We see that the bifurcation is
no longer forward but backwards. We have found that
the bifurcation changes for I' ~ 0.25. Note that the cell
is much deeper than for the case I' = 0.4 (see Fig. 4).

0.8 . . .
0.6
-
< 0.4
02}
0.0 . !
0.0 05 1.0 1.5
(A=A )/,

FIG. 5. Same as Fig. 4, but now for I" = 0.1 (A. = 2.51).
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VI. TRAIN OF STEPS
FOR THE ONE-SIDED MODEL

We now turn to the problem of a train of steps. We
still consider the case of perfect blocking from the upper
terrace (the one-sided model), but now we have a step
which is repeated at a distance [ in the z direction. For
simplicity we only consider synchronized steps (i.e., all
the steps are assumed to move in phase). The dispersion
relation for this case is written as

w(q) = g(q) — ¢*f(q), (33)

where

_ Q(F — Foq)
9(a) = cosh(A4l)

x[sech(l/z,) + zsAgsinh(Agl)tanh(l/z,)
—cosh(Ag)] (34)

and

flqg) =TQDAgtanh(AGl). (35)

The integro-differential equations no longer reduce to
a single equation since we have a contribution from the
field at z = I:

—-A + FIQ(S) = —/G(CB, xlayvy,)Pnlzdsl

+/ A - V'G(z,z',y,y)[-A + Tk(s")]ds’

—/ A VG, g,y +Du_(s), (36)

u_(s) = —/ 0 - V'G(z, 2, y,y )u_(s)
+/ i V'G(z,2',y,y — 1)[-A + Tk(s')]ds’

We now have to solve for u_(s) as well; compared to the
problem in Sec. V, the number of equations is doubled.

We can perform similar tests as mentioned in Sec. III
to check our program. In addition, we have verified that
for large ! our program gives essentially the same answers
as our program for an isolated step.

We have repeated the calculations for the parameters
in Sec. V, and for various values of I'. We find that by
including more than one step we can change the nature
of the bifurcation. As an example we have plotted A/,
as a function of the reduced wavelength for I' = 0.2 in
Fig. 6. For an isolated step we find a subcritical bifurca-
tion (solid line) while for a train of steps separated by a
distance small enough (in the figure we have taken [ = 1)
the bifurcation becomes supercritical (dashed line).
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FIG. 6. The amplitude of the cells as a function of the
reduced wavelength for an isolated step (solid line) and a train
of step (dashed line) in the one-sided model (I' = 0.2, I = 1).
Both the A and 2\ branches are plotted.

VII. THE GENERAL CASE

One of the most serious points which is emphasized by
the derivation of the step-flow equations in the original
work of Burton, Cabrera, and Frank! is that the condi-
tion on the concentration at the step is an equilibrium
condition. In the absence of precise information on the
validity of such an assumption, it may be helpful for fu-
ture experimental investigation to see whether relaxing
this assumption may induce significant changes or not.

This question is analyzed within linear out-of-
equilibrium thermodynamics, as discussed in Sec. II. The
attachments of adatoms from the lower and upper ter-
races are characterized by the two rate constants k_ and
ki (ord_ and d; ). It is not our intention to present a full
exploration of the phase space, but merely to present the
result of the calculation for some parameter values. We
should mention that we shall admit here that the attach-
ments of adatoms from the lower terrace dominates. This
is what is widely admitted. Indeed field-ion microscopy
images on some materials'® directly show atoms coming
from the upper terrace “reflecting” from the step. We
should, however, keep in mind that there are more re-
cent experiments!® which point to the fact that, under
some circumstances, this assumption may be called into
question.

The dispersion relation and the integro-differential
equation are given schematically in Sec. II. We have cho-
sen for dy and d_,

d_ =5, dy =0.1, (38)

and have repeated the calculation of the solution branch
for I' = 0.1 and [ = 0.5. In Figs. 7 and 8 we have pre-
sented, respectively, the cellular structure and the value
of u_ at the interface. In Fig. 9 we present the amplitude
of the cell as a function of the reduced wavelength. The
qualitative behavior of the solution branch is very much
like the ones we have discussed before. The interesting
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FIG. 7. The cellular structure for the general case (I' = 0.1,
1=05, d_ =5, and dy = 0.1; A, = 6.3).

feature induced by noninstantaneous atom attachment
at the step is that now the cellular depth is significantly
higher than in previous cases. In the one sided-model
treated in Secs. V and VI the aspect ratio (which is the
ratio of the depth to the cellular width) is at most 0.05
close to the threshold (see Fig. 4) and approximately 0.8
far from the threshold (see Fig. 5) while it is not far from
3 in the present case. The distinction in a real experiment
between shallow cells (the case where the step is a per-
fect sink and where diffusion is one sided) and the rather
deep cells (found in the present case) should be feasible.
This should therefore provide a first crucial step towards
the recognition of the role of kinetic attachment.

VIII. DISCUSSION AND OUTLOOK

In this paper we have investigated the stationary cel-
lular patterns which are formed above the morphologi-
cal instability of the terrace edge during step flow. It

-0.85 g

= -0.90

-0.95 ¢

-1.00 : : s
0 5 10 15

X/x

s

FIG. 8. The value of the concentration at the negative side
of the step for the general case (parameters are the same as
in Fig. 7).
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FIG. 9. The amplitude of the cells as a function of the
wavelength for the general case (parameters are the same as
in Fig. 7). The dashed curve is again the 2\ branch.

is important to stress that we have considered the full
equations, and thus performed a highly nonlinear analy-
sis. For typical parameter values we find, at least close
to the threshold, a supercritical bifurcation to cells. This-
should manifest itself in the experiments in wavy fronts.
Of course, we have not calculated the stability of the cells,
and the question of wavelength selection is still open (as
it is in other fields).

It would be interesting to run our calculations with
real material parameters. Unfortunately, some of these
parameters are poorly known. In particular, the rate
constants k_ and k., are not well known. Hopefully, fu-
ture experimental techniques can provide us with some
of these quantities.

An important result which has emerged here is that
when the sticking coeflicients are finite, there is a signif-
icant increase of the cellular depth. This result opens
a new line of experimental inquiry towards the identi-
fication of the importance of sticking, a question which
poses, to date, a formidable challenge.

There remain many other interesting problems in step
flow. Our calculation is a stationary one, which is a first
natural step in any pattern-forming problem. It is an im-
portant task for future investigation to deal with the full
dynamical problem in the most general case where steps
move in an asynchronized fashion both during growth
and sublimation. This will settle important questions
such as those pertaining to step bunching and time-scale
evolutions of step perturbations as a function of physi-
cal parameters, information which is by now accessible
to experiments performed in situ.'®

We can infer some results about the stability of the
cellular structure based on symmetry arguments. First,
it is clear that in Fig. 4 the celluar branch which bifur-
cates from the structureless state is stable against homo-
geneous fluctuations, a result which can be shown also
from a Landau-type expansion. Similarly, the branch in
Fig. 5 is unstable against homogenous fluctuations up to
the turning point where it gains stability (a result which
can follow from the analysis close to a saddle-node bi-
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furcation). Whether these states may suffer inhomoge-
neous instabilities or not is a question which requires a
detailed study of the stability problem, on which we hope
to report in the future. We are, nevertheless, tempted
at present to make some conjectures. For a completely
synchronized train the system possesses two invariances
(two Goldstone modes): (i) the translational invariance
along the step and (ii) the translational invariance per-
pendicular to the step. This means that there are two
dangerous modes, and since both operate on the same
(long-wavelength) scale they are likely to strongly cou-
ple. Since long-wavelength perturbations parallel and
perpedicular to the step are of diffusive type, the cou-
pling between the conjugate variables of the two Gold-
stone modes (the phase and the step amplitude variables)
should lead generically to long-wavelength oscillatory in-
stabilities, which would manifest themeselves in the form
of wvisco-elastic-like modulations. If the train motion is
not synchronized, however, the second Goldstone mode
is absent and wiscoelastcity should be supressed. In this
case besides the Eckhaus instability (associated with the
presence of the first Goldstone mode), we expect a variety
of hard mode instabilities (e.g., vacillating breathing!®).

Another important issue is to include other types of
step-step interactions (other than the one mediated by
adatoms), such as, for example, an elastic interaction.
We expect the step-step interaction to play important
roles in many situations. For example, during growth
interaction should reduce out-of-phase step excursions.
During evaporation, a situation which potentially leads
to step bunching, the elastic interaction should inter-
vene when the steps become closer and closer, and this
might lead to bound states keeping the steps at some
distance between each other, before other events, such as
a three body-interaction (with another step) may cause
an unbinding-type transition, and so on. Of course, at
such scales it is likely that the entropic repulsion plays
an essential role.

Another point which has been disregarded is crystalline
anisotropy. Anisotropy can enter in surface diffusion as
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well as in the line tension effect. Although we do not
believe this effect to be relevant for pattern selection, its
effect may induce some quantitative effects, and it is clear
that it is necessary to deal with this point in the future
with the aim of making the analysis more and more realis-
tic. Anisotropy sometimes creates interesting situations
in which to study step motions. This is the case with
a Si(100) surface which reconstructs by forming dimers
that are arranged in parallel rows.'” Thus the surface has
two degenerate reconstructed phases related by 90° rota-
tion and their surface periodicity is either 2 x 1 or 1 x 2.
Stated in another way the terraces are of two types: one
supports dimers that are parallel to the step, while the
other supports dimers perpendicular to it. If the surface
is miscut toward a (110) direction, adjacent steps are in-
equivalent. As a consequence adatom diffusion is highly
anisotropic, resulting in alternating “rigid” and “soft”
steps.'® This situation is a nice one to deal with theoret-
ically since one can study step motion between two rigid
ones, whose degrees of freedom are “quasifrozen,” and
can thus gain some insight on interacting step dynamics.

Finally, as step fluctuations as well as contamination
of terraces are persistent effects in real experiments,
it is strongly desirable to elucidate quantitatively their
role. The microscopic process together with the one-
dimensional character of the step confer to this system
the feature that the fluctuation problem is often very
much to the fore. The coupling between the determin-
istic dynamics and stochasticity is discussed to some ex-
tent elsewhere.!® At the moment, we are investigating the
dynamical behavior of the steps in the case of a synchro-
nized train and hope to extend the study to the above-
mentioned situations in the future.
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