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In a directional viscous fingering experiment, a phase diffusion behavior of the regular array of
cells is demonstrated. At constant wave number, the evolution of the phase diffusion coefficient D
with the parameter of the instability € is reported. This coefficient D is found to decrease at low
€ values in agreement with the presence of an Eckhaus instability, but to increase strongly at large
€ values. This unusual increase of D is also present in the analytical and numerical study of two
coupled amplitude equations for the modes k£ and 2k. The phase diffusion coefficient is found to
diverge at the threshold of the parity-breaking bifurcation.
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The idea of describing the dynamics of patterns ex-
hibited by forced dissipative systems through a phase
equation appeared some years ago [1]. The homogene-
ity of wave numbers often encountered above an insta-
bility threshold has been ascribed to the existence of a
diffusive behavior for the phase. Such a diffusive be-
havior has been found in Rayleigh-Bénard convection [2]
and more recently in Taylor vortex flow (TVF) [3]. Just
above the threshold, the patterns can be unstable to long
wavelength modulations if the phase diffusion constant
becomes negative. This instability is known as the Eck-
haus instability [4] and limits the range of possible wave
numbers for the stable pattern. More recently, it has
been shown in numerical simulations of the nonlinear
equations of directional growth [5] and TVF [6] that the
Eckhaus stable band shrinks due to the nonlinear inter-
actions between the fundamental (mode k) and the first
harmonic (mode 2k) of the pattern. Such interactions
were first analyzed by Jones and Proctor [7], and it has
been shown [8] that these interactions can explain the
broken parity propagative state observed in many ex-
perimental situations [9]. In this paper we present the
phase diffusion dynamics of the interface of a directional
viscous fingering (DVF) experiment, and show that for
a fixed wave number the phase diffusion constant D de-
creases to small values for a decreasing control parameter,
but increases to very high values for an increasing con-
trol parameter. Both these limits, D — 0 and D — oo,
constrain the domain of stable homogeneous stationary
patterns. The first behavior is interpreted as a classi-
cal Eckhaus instability, but the second is ascribed to the
proximity of a parity-breaking bifurcation. This assess-
ment is supported by the analytical study and simula-
tions of two coupled amplitude equations for the k& and
2k modes.

The experimental setup is similar to the one presented
in Ref. [10]. Here, one horizontal Plexiglas cylinder is
partially immersed in an oil tank. By rotating the cylin-
der, a coating oil film is dragged out of the tank and fills
the small gap between the cylinder and an upper hori-
zontal glass plate [Fig. 1(a)]. For a large enough rotation
rate, the downstream meniscus between the cylinder and
the glass plate undergoes a supercritical bifurcation, and,
seen from above, a periodic deformation of this menis-
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cus appears [Fig. 1(b)]. Here, in contrast to previous
studies of DVF, we impose the length L of the interface
by placing two Mylar triangles that fill the gap. Each
of these boundaries imposes the position of the last cell
[Fig. 1(b)], which is enlarged compared to the other cells.

In Ref. [10] the experimental evolution of the wave
number of the instability for increasing and decreasing
velocity was reported. Without the Mylar triangles a
very strong selection of the wave number exists and no
hysteresis was detected. In the present experiment we
repeat this study with rigid boundaries. In Fig. 2 we
plot the evolution of the wave number k for increasing

and decreasing dimensionless velocity € = V—‘—,Xi, where

V. = 159 mm/s is the instability threshold for large L.
The evolution of k is discontinuous and strongly hys-
teretic, even for a large number of air cells [11]. Any
mode k is stable if € ranges between €pn (k) and €0z (k).
We repeated the measurement at £ = 0.823 mm™! for
two lengths L corresponding to 5 and 22 cells, and the
two limits €min(k) and €,,q-(k) were almost unchanged,
showing that small box corrections are negligible.

In order to investigate the nature of the two stability

FIG. 1. (a) Sketch of the experimental setup. The rotat-
ing cylinder (radius 48 mm and length 236 mm) is partially
immersed in a silicon oil bath (viscosity of ¥ = 20 mm?/s
at 25 °C), thermostated at 25 + 0.1 °C. The coating film fills
the small gap (b = 0.22 + 0.02 mm) between the upper glass
plate and the cylinder, (b) picture of the unstable meniscus,
constrained by two Mylar triangles located inside the gap
with a spacing of L = 57 mm (dimensionless cylinder velocity
€ =1.72).
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FIG. 2. Experimental data points indicating the domain
of existence of stable stationary patterns observed when e
evolves (L = 57 mm). The number of cells evolves from 4 to
12. The solid lines are guides to the eye.

limits in the plane of Fig. 2, we measured the phase
diffusion constant of the pattern as in Ref. [3]. For this
purpose, one of the Mylar triangles is forced to oscil-
late slowly at the frequency f and the amplitude Z;. In
Fig. 3 we plot the temporal evolution of one video line
crossing all the cells. We see that each oil wall (labeled
0,1,...,n,...) between two air cells oscillates at the forc-
ing frequency. For each wall n, we measured the ampli-
tude and the phase of this oscillation. We found, to a
very good approximation, that the amplitude is propor-
tional to e~®™*, and that the phase change is equal to
—(Bn), where ) is the wavelength of the pattern.

For given € and k, we measured « and 3 over a large
range of frequencies (0.001 Hz < f < 0.05 Hz). In this
frequency range, as in TVF [3], we found that a = 8 and
a = = +/mf/D. These two results are characteristic of
a diffusion equation for the phase ® of the pattern with
a diffusion constant D:

08 _ 0%

2 (1)

Furthermore, this result shows that the phase diffusion

FIG. 3. Spatiotemporal representation of the position of
the oil walls when the left boundary is forced to oscillate
(f = 0.01 Hz, Zo =~ 0.4\, L = 131 mm, k = 0.64 mm™?,
and € = 0.16). 500 s elapse from top to bottom. We found
D = 18 + 2 mm?/s, which is of the order of the oil viscosity.

RAPID COMMUNICATIONS

R3577

dynamics is a pertinent description for the relaxation of
perturbations imposed to the system, even quite far from
the instability threshold where the cells are deep and have
a highly nonlinear shape.

We then measured the evolution of the diffusion coeffi-
cient D at fixed wave number k& when changing the € value
[Fig. 4(a)]. When ¢ is slowly decreased toward €min(k),
D decreases. This is in agreement with a classical Eck-
haus instability at €min(k) [2,3]. On the contrary, near
€maz(k), D increases very abruptly, which corresponds to
a more rigid pattern. By changing the frequency, we have
verified that the phase still follows a diffusive equation
Dear €42 (k). Divergence of D was always observed, for
the accessible range 0.5 < €maz(k) < 2. The same gen-
eral results were also observed for other values of L and
k. This asymmetry between the low and high € limits is
in agreement with the asymmetry of wavelength adjust-
ment processes observed in DVF with open boundaries
[10]. With these boundaries, the transients following a
negative jump in € correspond to one cell shrinking and
disappearing locally as in a classical Eckhaus scenario
(12]. After a positive velocity jump the transients are
characterized by a propagative localized state of broken
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FIG. 4. Evolution of the phase diffusion -coefficient
D at fixed wave number k. (a) Experimental data
(A) as a function of € for k¥ = 1.54 mm™'. (b)
As a function of i, calculated analytically (solid line)
and numerically (o). The chosen parameter values are
y=1 a1 =2, i2=-1, c1 =c2 =1, dy =dz2 = 04,
and k = 27/20.
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parity, which finally leads to the nucleation of a new cell.
Such localized states were explained through a k-2k mode
interaction [7,8]. It has been pointed out that the k-2k
interaction is also important in the case of Taylor vortex
flow [13].

We then tried to reproduce analytically the evolution
of D near a parity-breaking bifurcation. In the vicinity
of the codimension two point, where both the & and 2k
mode go unstable, we can describe the system in terms of
two coupled amplitude equations. After the appropriate
rescalings, these can be written as

Ay = i Ay — YA Ay — ay1|A1|? AL — b1|A2|? Ay
+ cl%g‘—il + idl%l,
()
Ag = figAy + YA2 — az|A2|2 A2 — b2 A2 A
+ cz%;—,‘i: +idy 242,

where the coefficients are all real. The last two terms,
containing the partial derivative in space, are due to the
curved nature of the marginal stability curve. The am-
plitude equations are derived from an expansion around
the codimension two point while the experiments are per-
formed away from this point. However, we will show be-
low that, if we use these equations away from the codi-
mension two point, they exhibit very similar behavior for
the diffusion coefficient [14].

These equations have been studied previously in the
analysis of the directional solidification of liquid crystals
[15]. To simplify the algebraic complexity of the stability
analysis that follows, we choose to present in this paper
the case ag = by, = by = 0. The essential physics, i.e., the
existence of a mixed mode and a traveling mode, is still
present for this particular choice of parameters and we
have verified that the following results also hold in the
general case.

It can be shown that the equations allow a mixed mode,
i.e., where both the k and 2k are present, and a traveling
mode, i.e., a mode with a nonzero transversal velocity
[16]. If we write A; = pe®e’*® and A, = ce'®e? = we
can check that for the mixed mode (MM) we have

2 _ _m(k)pa(k)
pa(k)ay —~%’

=P
= b’ (3)

while for the traveling mode (TW) we have

p2(k)

= KBy
,  cos(x) 2o (4)
where x = 20 — ¢, p;(k) = ji1 — c1k? — d1k, and pa(k) =
fizg — 4c2k? — 2dyk. The TW exists if |cos(x) < 1| and
thus if the following parameter, C, is positive:

7 ggr _ 2() + (k)
2(11

_ a1p(k) | pa(k)
C = u1(k) 2 + 5 (5)
The TW bifurcates off the MM branch on the line where
C becomes zero.
To investigate the stability of the MM against a vari-
ation of the wavelength of the underlying pattern, we
replace the base solution by
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Al =p (1 + nqeiqz+at + n_qe—iq:c+st) eikzeie,

(6)
A2 =0 (1 + quiqa:+at + C_qe—iqa:+at) eZikzeiqS.

Substituting the above expressions in Eq. (2), and lin-
earizing in 74+, and (44 we obtain a 4 x 4 matrix and
its eigenvalues are the growth rates of the perturbation.
The resulting characteristic equation does not contain
odd powers of q. Therefore, to find the dispersion re-
lation, and thus the diffusion constant D, we substitute
s = sg + s1¢%2 + - - - into the characteristic equation and
solve order by order. At order 0 in g, we get four roots for
8o, one which is equal to zero and three which are neg-
ative. For the most dangerous mode, the one for which
sop = 0, we get a dispersion relation of the form

F
s=-Dg* = 3¢, (7

where F is a complicated expression and C is defined in
Eq. (5) above, and becomes zero at the onset of the TW.
In other words, if we start in the MM state and approach
the line which marks the onset of the TW, the diffusion
constant D will diverge. We can also check that, for a
large range of parameters, F is positive so that D diverges
to +00. Furthermore, by solving D as a function of fi; we
have verified that D goes through zero if one decreases
fi1, which corresponds to an ordinary Eckhaus instability.
A typical behavior of D as a function of fi; is plotted in
Fig. 4(b). The qualitative behavior is identical to the
one we have observed in the experiment. Note that this
divergence is present for all parameter values.

To complete our analysis of the system, we have sim-
ulated the amplitude equations [Eq. (2)]. We have used
a simple finite difference scheme in space and a fourth
order Runge-Kutta in time. We took 20 wavelengths in
our computational box, which had reflective boundary
conditions. To mimic the moving boundary in the exper-
iment, we have varied the phase of A; and A, at one of
the boundaries sinusoidally with a fixed frequency and
amplitude. Next, we determined D from the exponential
spatial decay of the amplitude of the oscillations for each
cell, as in the experiment. We see in Fig. 4(b) that the
numerical results follow the analytical results closely.

In conclusion, we have presented a measurement of a
phase diffusive constant D in a directional viscous fin-
gering experiment and have reported the evolution of D
when the pattern is compressed or stretched compared
to its natural wavelength. In the case of compression,
D decreases as expected when reaching an Eckhaus in-
stability. In the case of stretching, D increases strongly.
This is ascribed to the proximity of a parity-breaking in-
stability and confirmed by the analytical and numerical
study of coupled amplitude equations. The strong in-
crease of the phase diffusion constant is a general result
that should be observed in other systems exhibiting a
parity-breaking bifurcation.

We thank Hermann Riecke for suggesting the possible
link between an increase of the diffusion coefficient and
a parity-breaking instability and for a fruitful discussion.
The Laboratoire de Physique Statistique is “associé au
CNRS et aux Universités Paris 6 et Paris 7.”
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a)

FIG. 1. (a) Sketch of the experimental setup. The rotat-
ing cylinder (radius 48 mm and length 236 mm) is partially
immersed in a silicon oil bath (viscosity of » = 20 mm?®/s
at 25°C), thermostated at 25 + 0.1 °C. The coating film fills
the small gap (b = 0.22 &+ 0.02 mm) between the upper glass
plate and the cylinder, (b) picture of the unstable meniscus,
constrained by two Mylar triangles located inside the gap
with a spacing of L = 57 mm (dimensionless cylinder velocity
€ =1.72).



FIG. 3. Spatiotemporal representation of the position of
the oil walls when the left boundary is forced to oscillate
(f = 0.01 Hz, Zo ~ 0.4\, L = 131 mm, k = 0.64 mm ',
and € = 0.16). 500 s elapse from top to bottom. We found
D=18+2 mmz/s, which is of the order of the oil viscosity.



