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Asymmetric cell in directional solidification
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An asymmetric cell is obtained numerically in the symmetric model of directional solidification.
It bifurcates off the symmetric cell branch and has a zero transversal velocity. The bifurcation point
is characterized by a parity breaking and a period doubling. The bifurcation diagram around the
codimension-two point found in previous work [Phys. Rev. A 45, 846 (1991)] is completed.

PACS number(s): 68.45.—v, 47.20.Hw, 68.10.—m

Numerous works have recently been devoted to the un-
derstanding of spatial and spatiotemporal patterns. In
particular, quasi-one-dimensional systems have attracted
a lot of interest. One such system is the directional solid-
ification of alloys or liquid crystals. Here, one pulls the
material with a fixed velocity v through an externally
imposed temperature gradient. In particular the liquid-
crystal system has been shown to exhibit a rich variety
of patterns and transitions [1,2]. Most experimentally
observed patterns have been reproduced in numerical in-
vestigations [3-6].

In this paper, we will present an asymmetric cellular
interface obtained numerically in the symmetric model of
directional solidification. Such a cell shape has recently
been observed experimentally in the directional growth
of succinonitrile 7] (where the one-sided model is appli-
cable) and numerically in eutectic growth [8] as well as a
dendrite in a channel [9], but not (yet?) in the directional
solidification of liquid crystals.

The basic equations for the concentration field ¢ in
the standard model of directional solidification have been
presented in detail elsewhere [10]. For the symmetric
model (equal diffusion constants in the liquid and the
solid) these are (in the frame moving in the y direction
with the pulling velocity v, and lengths rescaled by the
diffusion length %f-), and time rescaled by t—?)

Ve + 23—; = Oc (liquid, solid), (1)

with boundary conditions at the liquid-solid interface:

(2)
(3)

Here k is the partition coefficient, v is a rescaled capillary
length, £~ is the rescaled temperature gradient, and « is
the curvature. In the rescaled units the pulling velocity
equals 2. Since we are interested in stationary interfaces
we will set ;¢ = 0.

We will now briefly summarize our numerical method.
It consists of rewriting the diffusion equation and its
boundary conditions into an integrodifferential equation.
The resulting equation takes the form

(ﬁ . VC)L - (ﬁ . VC)S = -—2(1 - k)CLﬁy,

cp =% =% -~k

cr(s) = /(1 —k)en(s)d - V'G(s,s')ds' +1,  (4)
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where the integration is over the unknown interface. cy,
is the value of the concentration field at the liquid side
of the interface and can be expressed in terms of the
interface and material parameters using (3). Here G, the
Green’s function, is a solution of

V3G + 2‘?9—3 = —0(x —x') (5)

and can be written as

1 (s
=3 o€ @I Ko[v/(@ — 2’ + 2pn)? + (y — v')?],

) (6)

where we have used the periodicity of the cells. K is the
modified Bessel function of order zero. The important
advantage of this technique is that we only need to know
the value of ¢ at the interface, which is given by the
boundary conditions, and not everywhere in space.

After discretizing the interface, we have a set of non-
linear equations with as unknowns the interface itself and
its position in the y direction. This set of equations can
be solved using a Newton’s solver. Details of this tech-
nique can be found in [4,6].

In [6] the parameter space, v versus A, around the
codimension-two point was investigated in great detail
for the material parameters of the liquid-crystal experi-
ments in [1,2]. In this paper we will use the same values
for the material constants as in [6]. At the codimension-
two point both the ¢ mode and the 2¢ mode become
unstable, which allowed for the comparison between the
numerically obtained results with an analytical approach,
based on the coupling between the ¢ and 2¢ mode [11].
The agreement between the two approaches was found to
be remarkable.

A variety of branches were found in [6] which we will
briefly summarize here, using the notation of [6]. First of
all, there is the pure 2¢ mode denoted by S3. Then there
are two mixed modes, i.e., both with a ¢ and 2q com-
ponent present, which are denoted S.. These branches
all possess a reflection symmetry around the midline of
the cell. In fact, using this symmetry it is sufficient to
determine just half of a cell, thus taking the width of a
computational box to be A/2.

The linear stability of these symmetric cells was ex-
amined numerically. One of the mixed modes (S;) was
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found to lose its stability to a traveling wave (TW), a
cell with a nonzero transversal velocity. This bifurcation
constitutes a parity breaking, since the TW no longer has
a reflection symmetry around the midpoint of the cell.
By slightly adopting the numerical technique described
above it is possible to obtain numerically the TW cells
[5]. The main point is that if we go into a frame moving
with velocity v and a velocity in the transverse direction
the mode is stationary again.

Since the parity is broken, we now have to calculate the
whole cell shape and we have to take A as the width of
our computational box. However, compared to the new
cells to be discussed below, the wavelength of the cell is
the same as the wavelength of the symmetric cell.

Of course, more complicated cellular solutions cannot
be ruled out. One such possibility is an asymmetric cell
with zero velocity in the transverse direction. There is
evidence for the existence of such a cell in the directional
solidification of succinonitrile [7]. Furthermore, such a
cell has been found in the numerical investigation of eu-
tectic growth [8] and of a dendrite in a channel [9]. It
would therefore be logical to ask whether such a cell ex-
ists in the symmetric model of directional solidification.

In fact, the existence of a TW has helped us to find
such a solution. This solution can be thought of as a se-
ries of domains of alternating left and right going travel-
ing waves. The resulting cell will now have a wavelength
twice that of a TW cell. Consequently, we have to change
our Green’s function which now becomes

1 — —a!
G=3 5o UV Kol (o — '+ 4pn)? + (y— )]

(7

since our periodicity has doubled. As an initial guess we
have taken the interface shape of a TW and its reflection
around z = A. In this way we have indeed found a differ-
ent cellular structure. Two typical asymmetric (AS) cells
are displayed in Fig. 1, one for each part of the branch
(see below), along with the TW for the same computa-
tional box. We see that the asymmetric cell has twice the
period of the traveling-wave cell. It should be noted that
the full cell is reflection symmetric and thus stationary.
The new branch, which we call AS for asymmetric,
branches off the S, branch close to but not at the bi-
furcation point for the TW. Note that this bifurcation
means a period doubling, since the effective wavelength
becomes 2, and a parity breaking. The natural bifurca-
tion amplitude for this branch is the height difference A
of the cell at x = A/2, which corresponds to the end point
of our computational box, and z = 0. In Fig. 2 we have
plotted A as a function of the wave number. We see that
the bifurcation from the S, branch is supercritical and
that the branch has a fold and returns to a branch where
we again have symmetric cells (the dashed curve denoted
S3/2 in Fig. 2). What actually happens at the end of the
AS branch (the point where the solid curve in Fig. 2 joins
the dashed curve) can be seen most easily from Fig. 1.
As we increase g the midpoint of the cell at £ = A/2 (in
Fig. 1 this corresponds to the point z = 91.25 pm) con-
tinues to increase until it has reached the same value as
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FIG. 1. Cell shapes for an AS cell for the two parts of the
branch (solid line) and a TW cell for v = 18.5 um/s. For both
cells the computational box has the width 91.25 um but for
the TW branch one complete cell is in the box while for the
AS branch only half of the cell is in the box.

the other local extremum of the cell. Since we then have
one-and-a-half symmetric pure 2¢q cells in our computa-
tional box, we will denote this branch by S3/.

In Fig. 3 we have presented a full bifurcation diagram
of all the cellular solutions found. For this diagram we
have chosen to plot the total amplitude A of the cell as a
function of the wave number. The bifurcation diagram is
quite complicated and merits an explanation. The thin
lines are the branches already found in previous work.
First of all, the pure 2¢ mode S, branches off the planar
(A = 0) interface. The critical wave number for this bi-
furcation is determined by the linear stability analysis for
the planar interface. The mixed modes Si both merge
with the S branch. Finally, the traveling-wave branch
TW connects the S_ and the S, branch.

The thick line in Fig. 3 is the newly found asymmetric
cell branch (AS). It branches off the S solution and the

125 [
e T
t T
~~_
7.5 1
€
=
Ko
25 f
2.5 : :
0.06 0.07 0.08

q (um ™)

FIG. 2. The height difference h between the cell at z = /2
and z = 0 as a function of the wave number g for the AS cell
(v = 18.5 um/s). The thick solid line corresponds to the
asymmetric cell shapes and the dashed line corresponds to
the solution branch for the symmetric pure 2¢ mode.
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cell undergoes at this point a parity breaking and a period
doubling. The actual wave number of this branch should
therefore be read as half the wave number on the axis of
Fig. 3. Since the bifurcation is supercritical we expect
the S branch to lose its stability to the new AS branch.
Since the S branch is already unstable to the TW we
expect the AS to be unstable to the TW as well. As we
decrease the wave number, we encounter a fold in the AS
branch. The branch turns around and merges with the
symmetric S3/; mode branch. In our computational box
(which is twice as big as the computational box used for
the S, branch) we find % of a pure 2¢ cell, so the dashed
branch S3/; in Fig. 3 is nothing but the S, branch scaled
by a factor of 4/3. Note that the self-crossing of the
AS branch is an artifact of the way of presenting the
bifurcation diagram. The amplitude A of the cells at the
crosspoint is the same on the two parts of the branches,
but, as we can see from Fig. 2, the cells have a different
h and have thus a different shape.

We summarize this paper as follows: We have found
numerically an asymmetric cell in the symmetric model
for directional solidification. These cells bifurcate off the
symmetric cell branch resulting in a bifurcation which
breaks the parity and doubles the period.
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FIG. 3. The complete bifurcation diagram for
v = 18.5um/s. The thin lines correspond to previously ob-
tained results and the dashed branch Sj /2 is the Sz branch
scaled by a factor of 4/3. The thick line is the new AS branch
found in this paper.
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