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Chemotactic eukaryotic cells are able to detect chemoattractant
gradients that are both shallow and have a low background con-
centration. Under these conditions, the noise in the number of
bound receptors can be significant and needs to be taken into
account in determining the directional sensing process. Here, we
quantify numerically the number of bound receptors on the mem-
brane of a disk-shaped cell by using a numerical Monte Carlo
tool. The obtained time traces of the receptor occupancy can be
used as inputs for any directional sensing model. We investigate
the response of the local excitation global inhibition model and
a recently developed balanced inactivation model. We determine
a measure for the motility of the cell for each model, based on
the relevant output variable, as a function of experimental para-
meters, resulting in several experimentally testable predictions.
Furthermore, we show that these two models behave in a qual-
itatively different fashion when the background concentration is
varied. Thus, to properly characterize the sensitivity of cells to
receptor occupancy, it is not sufficient to examine the input sig-
nal. Rather, one needs to take into account the response of the
second messenger pathway.

chemotaxis | motility

D uring eukaryotic chemotaxis, chemical gradients determine
and guide the crawling motion of cells. Chemotaxis plays a

fundamental role in development and in immune responses and is
implicated in the spreading of cancer (1–3). The external gradient
of the chemoattractant results in an asymmetric distribution of
bound receptors on the cell’s membrane and the directional sens-
ing process translates this receptor asymmetry into directed cell
motion. A number of biochemical components of the directional
sensing pathway of several model systems have been determined
(4–7) and an array of different mechanisms have been proposed,
including Turing-type instability mechanisms (8), phase separa-
tion mechanisms (9), bistable mechanisms (10), depletion mech-
anisms (11, 12), and communication through diffusible inhibitors
(13–16). Despite the recent experimental progress and theoreti-
cal efforts, however, the precise mechanisms underlying chemo-
taxis, in general, and directional sensing, in particular, are poorly
understood (17, 18).

Further complicating the directional sensing problem is the
potential role of stochasticity. It has been shown that cells are
able to chemotax in very shallow gradients with a large range of
background concentrations (19, 20). For these shallow gradients
the difference in the number of bound receptors at the front and
the back of the cell can be as little as 20. Comparing this with the
total number of bound receptors, which is of the order of several
hundred, leads to the question of noise in directional sensing.

Several recent studies have investigated this issue, by using dif-
ferent approaches, including information theoretical ones (21),
general considerations (20, 22, 23) and 1D caricatures of the cell
(24). What has been lacking to date, however, is a treatment of
the directional sensing problem that (i) exactly quantifies the fluc-
tuations in the number of bound receptors taking into account
the spatial extent of the cell and (ii) couples this noisy signal to a
downstream intracellular directional sensing pathway.

In this article, we present a numerical modeling study that is
able to determine exactly the number of bound receptors as a
function of time. These time traces are then used as input sig-
nals for a directional sensing pathway. To show the generality of

this approach we investigate here the response of two recently
developed intracellular directional sensing models (13, 16). This
response is quantified as a function of different experimental para-
meters, including the background concentration and the ligand
diffusion constant, leading to experimentally testable predictions.

Results
Time Series. The first step in our computational procedure is to
explicit generate time series of the number of bound receptors
arising from the simple ligand–receptor interaction L + R0 � R1.
The forward rate k+[L], where [L] represents the ligand concen-
tration, and backward rate k− determine the transitions between
the unoccupied R0 and occupied R1 states and can be combined
to give the dissociation constant Kd ≡ k−

k+ . We will consider a
cylindrical cell of radius R where the curved parts are uniformly
covered with Ntot receptors. Motivated by experimental setups, we
place this cell in two types of gradients, each with a midpoint, or
background concentration of c0. The first one, which we will call a
linear gradient, is such that the concentration at the front and back
differ from the background concentration be a constant amount:
cf = c0 + � and cb = c0 − �. The second type is one where the
concentration at the front and back is given by cf = c0(1 + p) and
cb = c0(1 − p), respectively. Because this gradient can be approx-
imated by imposing an exponential concentration profile (25) we
will call it exponential here.

The cylindrical cell is divided into M = 100 equal-sized radial
segments and a typical time series of the number of bound recep-
tors for two of the segments is shown in Fig. 1A for the case of
zero gradient. We have verified that the average number of bound
receptors is given by the equilibrium value Nsegc/(c + Kd), where
Nseg = Ntot/100 is the number of receptors of the segment and
where c is the local concentration. Furthermore, we found, as
expected, that the variance in the number of bound receptors is
NsegcKd/(c + Kd)2. Parameter values used in this study are based
on Dictyostelium discoideum data with R = 5 μm, Ntot = 70, 000,
Kd = 30 nM and k− = 1 s−1 (26).

Fig. 1B shows the autocorrelation function C(t) for the total
number of bound receptors that can be fitted well with a sim-
ple exponential decay: C(t) ∼ exp(−t/τc). As has been derived
and explicitly shown earlier for spherical cells, the correlation
time consists of two contributions τc = τrec + τdiff (27–29). The
first one is from the receptor dynamics and is given by the sim-
ple relationship τrec = 1/(k− + k+Kd). The second contribution
comes from the diffusive process and depends linearly on the num-
ber of receptors and is inversely proportional to the diffusion
constant of the ligand: τdiff = Ntot/(4πDlRKd). The autocorre-
lation function for a single segment is also shown in Fig. 1B.
The correlation time obtained through an exponential fitting is
smaller than the correlation time of the entire cell. The difference
between the two correlation times is a result from the nonzero
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Fig. 1. The results from the MCell calculation for c0 = 1 nM and p = 0 (A–C)
and p = 0.01 (D and E). (A) The number of bound receptors as a function
of time for two different segments. (B) The normalized correlation function
for a single segment (squares) and for the entire cell (circles). The lines are
linear fits giving a correlation time for the segment of τc,seg = 1.18 s and for
the entire cell of τc,cell = 5.01 s. (C) The cross-correlation function between
neighboring segments, averaged over all pairs, as a function of time. (D)
The distribution in the difference between bound receptors in the front and
back half of the cell. The symbols are the numerical results and the curve is
the Gaussian fit. (E) The signal-to-noise ratio (SNR) for the half and segment
comparison as a function of the background concentration for both the lin-
ear and exponential gradient. (F) The fraction of the Gaussian distribution
for which the difference is positive as a function of the exponential gradient
steepness. The symbols correspond to values obtained from the MCell simula-
tion and the curves are the results of analytical calculations (see SI Appendix).
The black curve corresponds to the case where occupancy at the front half
and back half of the cell are compared and the red curve corresponds to a
comparison between the front-most and back-most segments.

cross-correlation between segments. This cross-correlation is plot-
ted in 1C for neighboring segments and shows a clear maximum at
t ∼ 1.4 s.

We computed the resulting distribution of the difference in
bound receptors between the front half and back half of the cell,
Nbound,front − Nbound,back, and fitted it to a Gaussian distribution.
This is shown in Fig. 1D for the case p = 0.02 where the sym-
bols are obtained from the MCell simulation and the red curve
is the Gaussian fit. The fit is excellent and, clearly, the difference
is Gaussian distributed. The distribution for each individual seg-
ment and, thus, the distribution of the difference between the
front-most and back-most segment is also a Gaussian distribu-
tion (data not shown). Analytical expression for these distribu-
tions can be derived, as shown in the supporting information (SI)
Appendix.

Using the Gaussian distribution, we can quantify the asymmetry
in the input signal by calculating the signal-to-noise ratio (SNR),
defined as the ratio of the average of the distribution and the
standard deviation. Analytical expressions for the SNR can be
obtained for both the segment and the halves comparison (see
SI Appendix). In Fig. 1E we plot the SNR by using these analyt-
ical expressions as a function of the background concentration
c0 for a fixed gradient steepness. For a linear gradient (dashed
curves), both the halves and the segments decay monotonically as
a function of c0. For an exponential gradient, however, there is

a maximum at c0 = Kd. The SNR for the halves is always larger
than the SNR for the segments, reflecting the fact that taking into
account more segments improves the ability to separate the front
and back signals.

Finally, we have calculated Pbias, defined as the probability that
the distribution is > 0 (see SI Appendix). This is plotted in Fig.
1F as a function of the exponential gradient steepness p for both
the halves and for the segment comparison. Not surprisingly, Pbias
increases as the gradient becomes steeper and is again larger
for the halves than for the segments. A comparison between the
analytical results (curves) and the numerical results (symbols)
demonstrate that the simulation results can be accurately captured
by Gaussian distributions.

Directional Sensing Models. The output of the stochastic MCell cal-
culations was used as input for two different directional sensing
pathway models, the local excitation global inhibition (LEGI)
model (13, 14), and the balanced inactivation (BI) model (16). In
the LEGI model, the external stimulus produces a local activator
as well as a globally diffusing inhibitor. It exhibits perfect adapta-
tion, which ensures that a gradient can be “sensed” for arbitrary
background concentration. In the BI model, two second messen-
gers are produced at equal rates. The diffusion of one of them,
coupled with an inactivation scheme, ensures a nearly complete
suppression of the response at the back and a switch-like response.
Because the identification of the biochemical components in the
directional sensing mechanisms is problematic, it is impossible to
estimate the level of stochasticity arising from fluctuations in the
number of second messenger molecules. Hence, the response of
these models was simulated by using a deterministic approach in
which the cell was taken to be a circle and divided into 100 equal-
sized segments. The input on each segment corresponds directly
to the number of bound receptors on one of the segments in the
MCell simulation.

As a first example of our numerical results we show in Fig. 2A
the response of the BI model in the absence of surface diffusion.
Here, we plotted the read-out component A along the perimeter
as a function of time in a gray scale, with black corresponding
to low values and white corresponding to large values of A. The
response is very jagged, with large values of the response variable
(white peaks) on the scale of single-cell segments indicating that
a “smoothing” mechanism is needed. The inclusion of nonzero
membrane diffusion constant for the read-out component can pro-
vide such a mechanism. This is demonstrated in Fig. 2B where
the membrane response is smoothed out such that the peak now
extends over several segments.

Further examples of our results are found in Fig. 2C–H where
we have plotted the response of the two models along the mem-
brane (the variable R for the LEGI model and A for the BI model)
every second for 100 s for three different values of the exponen-
tial gradient p. Both models experience a much larger and clearer
peak in the direction of the gradient for steeper gradients. This is
an expected result because the difference in the number of bound
receptors increases as the gradient becomes steeper.

To further interpret the results of our simulations we need to
construct a motility model. The precise mechanisms by which cells
move is complex and poorly understood and involves the actin
machinery. Thus, we have chosen to couple our sensing output to
a phenomenological model that uses the output at every segment
and assigns a velocity to that segment based on the value of the
read-out component. Specifically, for the BI model we calculate
for each segment i the following quantity

Gi(t) = 1
Tdec

∫ t

t−Tdec

e−(t−s)/Tint Ai ds [1]

after each “decision” interval Tdec. We have introduced an integra-
tion time Tint, which reflects that recent signals contribute more
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Fig. 2. The response of the membrane-bound reporters of the directional
sensing models. (A and B) The response of the membrane-bound variable
A of the balanced inactivation model plotted by using a gray scale, with
black corresponding to low values of A and white corresponding to large
values of A (p = 0.05 and c0 = 1 nM). In A, the membrane diffusion con-
stant of A was set to be zero and in B it was chosen as Dm = 2 μm2/s.
Parameter values for the BI model throughout this study are ka = 10 s−1,
ki = 1, 000 μm (s molecule)−1, kb = 3 μms−1, k−a = 0.2 s−1, k−b = 0.2
s−1, and D = 10 μm2s−1. (C–H) The response of A in the balanced inacti-
vation (C–E) and of the membrane-bound variable R in the local excitation
global inhibition (F–H) model for three different values of the exponential
gradient p. To aid in the visualization, the response was multiplied by a
constant factor and shifted in the horizontal and vertical direction. The para-
meter values for the LEGI model are k−r = 10 μm (s molecule)−1, kr = 0.25
s−1, ke = 0.1 s−1, k−e = 0.5 s−1, k−i = 0.4 μm s−1, ki = 0.4 s−1 D = 10
μm2s−1 and Dm = 1 μm2s−1.

strongly to motility than signals that occurred in the distant past.
From this, we calculate a response function for each decision
interval, Xi, relative to the average value of Gi over all M segments:

Xi = Gi − 1
M

M∑
i=1

Gi [2]

The contribution of this segment to the overall velocity of the cell
is calculated as

vi = 0 if Xi < φ

vi = v0n̂ if Xi > φ [3]

where n̂ is the normal direction of segment, v0 is the speed (chosen
here to be 1) and where φ is a threshold. The cell’s velocity v is
determined by the sum of the velocity of all the segments:

Fig. 3. The response of the directional sensing models as a function of sys-
tem parameters. (A) The chemotactic efficiency as a function of the exponen-
tial gradient steepness p for the BI model for c0 = 1 nM and motility threshold
φ = 0. The CE is computed for a short decision interval (Tdec = 3 s, filled
squares) and a longer decision interval corresponding to typical pseudopodal
lifetimes (Tdec = 30 s, open circles; used in the remainder of the figures). (B)
The chemotactic efficiency as a function of the background concentration
for the BI model without membrane diffusion (filled diamonds) and with
membrane diffusion (filled squares, Dm = 2 μm2/s) and for the case where
the output signal is simply the number of bound receptors in each segment
(open circles). The exponential gradient steepness was fixed at p = 0.01 and
the threshold value for the motility model was chosen to be φ = 0. (C) The
ratio of the membrane-bound activator A in the deterministic BI model as a
function of c0 for an exponential gradient (p = 0.01) and a linear gradient
(� = 0.1 nM). (D) The ratio of the membrane-bound read-out component R
in the deterministic LEGI model as a function of c0 for an exponential gradi-
ent with steepness p = 0.01. The inclusion of a nonzero membrane diffusion
constant for the membrane-bound components leads to a maximum in the
response curve for small values of c0 (see also SI Appendix). (E) The chemotac-
tic efficiency as a function of the background concentration for the BI model
(φ = 0.003) and the LEGI model (φ = 6×10−6). The gradient steepness for the
exponential case was fixed at p = 0.01 and for the linear case at � = 0.1 nM.
(F) The chemotactic efficiency of the BI model (filled symbols) and the cor-
relation time of a single segment (open symbols) as a function of the ligand
diffusion constant (c0 = 1 nM and p = 0.05).

v = π

M

M∑
i=1

vi. [4]

where the normalization constant is chosen such that the speed can
be at most 1. Cell deformations in this simple model are ignored
and the velocity acts on the center of mass of the disk. The chemo-
tactic efficiency CE is defined as the total displacement in the
direction of the gradient divided by the total number of decision
intervals and can take on values between −1 and +1. For the LEGI
model we follow an identical procedure with Ai in Eq. 1 replaced
by Ri. Finally, we have also computed this chemotactic efficiency
in the absence of any downstream pathway and where the output
signal is the number of bound receptors in each segment (i.e., we
substitute Ni for Ai in Eq. 1).

In Fig. 3A we show the chemotactic efficiency CE of the BI
model as a function of the steepness parameter p for exponential
gradients (c0 = 1 nM, φ = 0) for a decision time interval close
to typical pseudopodal lifetimes (Tdec = 30 s) and for a much
shorter decision time interval (Tdec = 3 s). As expected, the CE
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is a sigmoidal function approaching 0 for small values of the gra-
dient steepness and reaching a maximum for steep gradients. Fig.
3A also demonstrates that longer decision intervals and integra-
tion times increase the CE. This can be expected because a larger
integration time is more effective in filtering out the noise than a
short integration time. Qualitatively similar curves are obtained
in the case for a linear gradient and when applied to the LEGI
model (data not shown).

We have investigated the dependence of the CE on the back-
ground concentration c0. Results are shown in Fig. 3B where the
CE computed solely based on the receptor occupancy is plotted
as open circles. This CE displays a peak for background con-
centrations ≈2Kd and is larger, for all values of c0, than the CE
computed by using the BI model in the absence of surface diffu-
sion (filled diamonds). However, the inclusion of surface diffusion
in the membrane-bound components of the BI model leads to a
smoothing of the signal and a significant improvement of the CE
(filled squares). Qualitatively similar curves can be obtained by
using the LEGI model (data not shown).

The curves above were obtained for φ = 0, meaning that any
segment above the average value contributes equally to the over-
all motility of the cell. It is more realistic, however, to define a
nonzero value for the threshold. Only segments with a value that
is significantly above the average will be able to contribute to the
formation of actin filaments, generate pseudopods, and affect the
cell’s velocity. The precise value of this threshold is difficult to
determine because the coupling between the directional sensing
pathways and the actin pathways is unknown. Here, we pick a
threshold that is based on the deterministic response (i.e., the
response in the absence of receptor fluctuations) of the directional
sensing models. This deterministic response is shown in Fig. 3C
and D, where we plot the ratio of the membrane-bound indica-
tors at the front and back as a function of c0 for a fixed value of
the gradient steepness p. For the BI model, the response curve is
decreasing monotonically for a linear gradient but shows a max-
imum at c0 ∼ Kd/2 for an exponential gradient. For the LEGI
model, the linear gradient also results in a decreasing ratio as a
function of c0, independent of the value of Dm (data not shown).
The response of the exponential gradient, however, depends on
the value of the membrane diffusion constant. For Dm = 0 the
ratio decreases monotonically, a result that can also be obtained
analytically (see SI Appendix). For nonzero values of Dm, however,
the response of the front is decreased and the curve shows a max-
imum for small values of c0. For the value of Dm shown in Fig. 3D
this maximum occurs at c0 ∼ Kd/30.

As a threshold value for the motility model we choose 10% of
the difference between the front and back value at the maximum
in each model. For p = 0.01, the value considered here, this leads
to φ = 0.003 for the BI model and φ = 6 × 10−6 for the LEGI
model. This extremely small value for the LEGI model is due to
the fact that it only reads the external gradient and leaves the
necessary amplification step to an unspecified downstream path-
way. The response of the 2 directional sensing models exposed to
exponential gradients is shown in Fig. 3E. The BI model displays
a clear maximum for values of c0 ∼ Kd (open circles). The CE
for the LEGI model peaks for a smaller value of the background
concentration (filled squares), reflecting the deterministic curve.
Furthermore, it is extremely sensitive to the value of the threshold:
it only shows a chemotactic efficiency of > 0.5 at the maximum
value of the background concentration forφ < 4×10−5 (compared
with φ < 0.03 for the BI model). This ultra sensitivity to the thresh-
old value can be improved somewhat by including an amplification
step in the LEGI, as was done in Levchenko and Iglesias (14). We
have verified that this inclusion does not lead to qualitatively dif-
ferent results (see SI Appendix) and that the required threshold is
still much smaller than for the BI model (φ ∼ 6 × 10−4). In Fig.
3E we have also plotted the response of the BI model to a linear
gradient (filled diamonds) which is maximal for small values of c0.

Clearly, the relative difference in occupancy for a linear gradient
is much larger for small background concentrations and becomes
negligible for large values of c0 (25). Hence, the CE is a decreasing
function of the background concentration. A qualitatively similar
curve was also found for the LEGI model (data not shown).

We have also investigated the dependence of the correlation
time and the CE on the ligand diffusion constant Dl for a fixed
value of c0 and p (Fig. 3F). Consistent with our earlier numerical
work (29), the correlation time of a single segment increases as
the ligand diffusion constant is decreased. The CE decreases as
Dl is decreased, indicating that the directional sensing becomes
more difficult if the ligand molecules diffuse slower.

Discussion
Motivated by the possible role of receptor fluctuations in eukary-
otic chemotaxis, we have explicitly simulated the dynamics of the
receptor occupancy. The simulations reported here provide an
exact treatment of the input signal for the directional sensing
process, including its noise strength, and eliminate the need for
approximative approaches. As input parameters, the simulation
requires the parameters for the receptor dynamics (Kd and k−),
the geometry of the cell, the number of available receptors, and
the diffusion constant of the ligands. We applied our method to
a 2D disk-shaped cell but it can be easily extended to arbitrarily
shaped cells, including 3D cell shapes although this becomes com-
putationally more expensive. The resulting time series from this
method can be used as input for any second messenger pathway.
Here, we have studied two different directional sensing mecha-
nisms that use the gradient in receptor occupancy and translate
this into an internal second-messenger asymmetry.

The downstream pathway in our study was treated determinis-
tically, ignoring any stochasticity arising from cytosolic diffusion
and other signaling pathway reactions, for two reasons. First, the
level of this noise will depend critically on the concentration of
signaling molecules in the downstream directional sensing path-
ways. The precise biochemical identification of the components of
these pathways is still lacking and the copy number of these com-
ponents is thus still undetermined. Second, there is no obvious
reason to expect this noise to be particularly large; unlike the case
of genetic systems, there are very small numbers of the relevant
nucleic acids. In any case, including only receptor noise gives an
upper bound on the chemotactic efficiency.

A number of other studies have also recognized the importance
of noise in directional sensing (20–24). Several of these attempt
to estimate the SNR of the input signal, taken to be the differ-
ence between the number of bound receptors at the front and at
the back of the cell (20, 23). This approach makes a number of
assumptions and arrives at an estimated SNR that is a function of
the correlation time, the measuring time, and the correlation time
of the internal pathways. It is similar to using the results in Fig.
1D and E and determining the chemotactic efficiency uniquely on
the basis of the input signal. One difference, however, is that this
approach only examines the receptor dynamics and does not cap-
ture the contribution of the diffusive process of the ligands to the
correlation time and to the SNR. This contribution is small for
large diffusion constants but can become important if the diffu-
sion constant of the chemoattractant is lowered (see Fig. 3F). In
addition, determining the chemotactic efficiency based on the dif-
ference of bound receptors in the front and back assumes that the
cell can only move forward or backward and neglects any move-
ment away from the gradient axis. To allow the cell to move in
directions other than forward or backward we have introduced a
motility model that can be used to quantify a chemotactic effi-
ciency based on the occupancy of the segments (see Eq. 1). The
results show that the CE has now a maximum for larger back-
ground concentrations than based on the SNR (Fig. 3B). Most
importantly, however, this approach ignores the downstream sens-
ing pathways and assumes that the cell is somehow able to pick its
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direction solely based on the distribution of occupied receptors. As
we demonstrate in Fig. 3E, details of the directional sensing mod-
els lead to qualitatively different curves. Thus, examining only the
input signal is not sufficient and the downstream pathway needs
to be taken into account.

In a previous study, we applied our methodology to a simplified
geometry in which the cell was represented by two points (the front
and the back) connected by a line on which the cytosolic inhibitor
can diffuse (24). Although this approach is useful in obtaining
insight into the mechanisms of noise propagation, it can not cap-
ture the importance of a “smoothing” mechanism. Without such
a mechanism, the response along the membrane is very jagged
with peaks and valleys occurring on the scale of the segments
(see Fig. 2A). We show here that diffusion of membrane-bound
components of the downstream pathway, with diffusion constants
that are consistent with typical values for membrane-bound mole-
cules, is a possible smoothing mechanism. Interestingly, including
membrane diffusion of the receptors with a comparable diffusion
constant (1 μm2/s) is not sufficient to smooth the response along
the membrane (data not shown). We can provide a rough esti-
mate of the required value of the membrane diffusion constant
to eliminate peaks on the scale of the membrane segments in our
simulations. For the parameter values used in the BI model, the
response time τres of the activator A, defined as the time it takes
to reach its peak after a sudden increase in the signal, is on the
order of 1 s. During this time the molecule diffuses over a length√

Dmτres. This length needs to be at least on the order of the size
of a segment 2πR/100 ∼ 0.3 μm, giving us a lower bound on the
diffusion constant of approximately 0.1 μm2/s for our numerical
approximations to be accurate.

Our study leads to several clear experimental predictions and
tests. The first one is shown in Fig. 3F, which demonstrates that
the chemotactic efficiency is a function of the correlation time. In
particular, the chemotactic efficiency decreases as the correlation
time increases, consistent with our findings in 1D (24) and theo-
retical work on the the propagation of noise in signal transduction
networks (22, 30). This correlation time is the sum of two terms,
one that describes the receptor dynamics and the other one that
arises from the ligand diffusion. The second term is inversely pro-
portional to the ligand diffusion constant (28, 29) and changing the
correlation time in experiments might be achieved via the chemi-
cal modification of the chemoattractant. For example, in the case
of Dictyostelium it might be possible to tether cAMP to large mol-
ecules, whereas in the case of neutrophils large molecules could
be attached to the chemoattractant fMLP. These modifications
should allow one to reduce the diffusion constant significantly.

The second experimental test can be derived from Fig. 3E,
which shows that the response to the noisy input can be model
dependent. In particular, the chemotactic efficiency in exponen-
tial gradients calculated by using the BI model displays a maximum
for a background concentration that is larger than for the LEGI
model. Using microfluidic devices (19, 25, 31), possibly combined
with uncaging techniques (32), it should be feasible to measure
the chemotactic response as a function of the background con-
centration. The results of these experiments can then be used to
critically test the proposed mechanisms, a useful result in light
of the current abundance of abstract models. Finally, we should
stress here that the obtained time series for the occupied receptors
can be used as input in any directional sensing model. As such, it
should be possible to use our method to test additional proposed
mechanisms and to further restrict the number of viable models.

Methods
Generation of Time Traces. To obtain the time series of the number of bound
receptors we use MCell3, a modeling tool for realistic simulations of cellular
signaling in complex 3D geometries (33). This simulation tool, recently used
by us to characterize the noise level as a function of the number of recep-
tors for a spherical cell (29), uses highly optimized Monte Carlo algorithms to
track the stochastic behavior of discrete molecules in space and time as they

Fig. 4. Representation of the numerical procedure. (A) Geometry used in
the MCell simulations. A cylindrical cell is placed in a larger computational box
of equal height. The cylinder is divided into 100 identical radial segments and
the number of receptors is recorded in each segment as a function of time.
(B) The time series for each segment is used as input in a 2D simulation of
the directional sensing model.

diffuse in user-specified geometries. It can model interactions between diffus-
ing molecules and receptors on cell membranes as well as molecule–molecule
interactions and has been validated extensively (33).

Our cylindrical cell is placed in a computational box of equal height and
is divided into 100 equally large segments as shown in Fig. 4A. The top, bot-
tom, and sides of the computational box are chosen to be reflective, whereas
the front and back are kept at a specified concentration. The ligand mole-
cules diffuse freely in the computational box with a diffusion constant D that
can be set at the start of each simulation, leading to the standard diffusion
equations for the ligand concentration:

∂[L]
∂t

= D∇2[L] [5]

The MCell simulations record the number of bound receptors Ni in each seg-
ment i as a function of time. Typical runs lasted 5,000 s for small c0, with
occupancy recorded every 0.001 s. For larger c0, the runs were terminated
after 1,000 s. The data were used to calculate the auto correlation function
for segment i, C(τ ) = ∫

(Ni(t) − N̄i)(Ni(t + τ ) − N̄i)dt, where N̄i is the time-
averaged occupancy of the segment. Similarly, the cross-correlation between
neighboring segments was calculated as Ccross(τ ) = ∫

(Ni(t)− N̄i)(Ni+1(t +τ )−
N̄i+1)dt.

The generation of a gradient in the membrane occupancy was achieved by
using two different methods. In the first, our main method, we set the front
and back concentration of the computational box equal to c0, corresponding
to p = 0, and adjusted the occupancy rate according to the desired gradient.
Specifically, we adjust the occupancy for the segment Ñ(x, t) such that the
equilibrium value corresponds to the local concentration value:

N(x, t) = Ñ(x, t)

c(x)
c(x)+Kd

c0
c0+Kd

[6]

where c(x) is the concentration at location x along the gradient direction
with x = 0 corresponding to the cell’s center (see Fig. 4B). Thus, for a linear
gradient we choose c(x) = c0 + �x

R , whereas for the exponential gradient we
have c(x) = c0(1 + px

R ).
In the second method, we fixed the concentration at the front and at the

back of the computational box corresponding to the desired gradient. The
no-flux boundary condition at the cell membrane, however, leads to a dis-
tortion of the linear gradient close to the cell (specifically, the derivative of
the concentration field normal to the cell’s membrane is zero). The actual
gradient in the membrane occupancy p was calculated by fitting the occu-
pancy of the segments to the expression N(x) = N0 + δ x

R where we have
used the fact that the position of the segment is given by x = R cos(θ) (see
Fig. 4B). Here, N0 is the equilibrium occupancy in the absence of a gradient
and δ is a fitting parameter that can be related to the gradient steepness by
using the equilibrium values for the occupancy. Specifically, at the front we
have cf = c0(1 + peff) and Nf = Nsegcf /(cf + Kd ). Matching this expression to
N(R) = N0 + δ and repeating this procedure for the back we find cf and cb
from which we can determine peff = (cf −cb)/2. Importantly, the results from
both methods agree well with each other.

Simulation of the Directional Sensing Models. The time series obtained by
MCell were used as input for a 2D directional sensing simulation where each
segment on the cylinder maps onto a segment of the circular cell perime-
ter (see Fig. 4B). The intracellular pathway is computed by using the phase
field method, a method that is particularly well suited to handle the required
boundary condition on the curved cell membrane (16, 34, 35).
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The first model, the local excitation global inhibition (LEGI) model, assumes
that the communication between different parts of the cell is achieved via
a diffusible inhibitor whereas the excitation is a local phenomenon (13, 14).
Furthermore, perfect adaptation is implemented to ensure that the response
can be accomplished over a wide range of gradient parameters. We will use
here a simple version of the LEGI model (36), which leaves out any potential
downstream amplification steps:

∂E
∂t

= −k−eE + keS + Dm∇2
mE at the membrane

∂R
∂t

= −k−r IR + kr E + Dm∇2
mR at the membrane

∂I
∂t

= D∇2I in the cytosol

with a boundary condition for the outward-pointing normal derivative of the
cytosolic component:

D
∂I
∂n

= kiS − k−i I, [7]

where S is the input signal, I is the cytosolic inhibitor with diffusion constant
D, E is the activator, and R is the read-out signal. Both E and R are membrane
bound and can diffuse with a diffusion constant Dm.

Our second model is the balanced inactivation (BI) model, which also
assumes the existence of a diffusible cytosolic inhibitor (B) (16). This inhibitor,

produced by the signal S, suppresses the activation on the membrane,
measured by the variable A through its membrane bound version Bm.

∂A
∂t

= kaS − k−aA − kiABm + Dm∇2
mA at the membrane

∂Bm

∂t
= kbB − k−bBm − kiABm + Dm∇2

mBm at the membrane

∂B
∂t

= D∇2B in the cytosol

together with

D
∂B
∂n

= kaS − kbB. [8]

Again, the membrane-bound components can diffuse with diffusion constant
Dm. If the diffusion of the cytosolic inhibitor is fast enough the levels of
membrane-bound B at the front and the back are nearly identical. This leads
to an almost complete inactivation of A at the back, whereas the level A at the
front remains significantly nonzero. The resulting large asymmetry in A can
be achieved over a wide range of gradient and model parameters. Further
details of this model can be found in the original reference (16).
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