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Intercellular Stress Reconstitution from Traction Force Data
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ABSTRACT Cells migrate collectively during development, wound healing, and cancer metastasis. Recently, a method has
been developed to recover intercellular stress in monolayers from measured traction forces upon the substrate. To calculate
stress maps in two dimensions, the cell sheet was assumed to behave like an elastic material, and it remains unclear to
what extent this assumption is valid. In this study, we simulate our recently developed model for collective cell migration, and
compute intercellular stress maps using the method employed in the experiments. We also compute these maps using a method
that does not depend on the traction forces or material properties. The two independently obtained stress patterns agree well for

the parameters we have probed and provide a verification of the validity of the experimental method.

INTRODUCTION

The collective migration of groups of cells is important in
many biological processes, including development, wound
healing, and cancer metastasis (1,2). Despite numerous
experimental and theoretical studies, many aspects of col-
lective migration are poorly understood. For example, it
was generally believed that cells at the edge of monolayers
move actively whereas cells in the bulk are dragged along
passively (1). In support of this, the leader cells at the tips
of fingerlike protrusions in wound-healing assays show a
distinct morphology (3), and inclusion of leader cells into
simulations predicts finger formation (4). However, recent
studies showed that all cells, those in the bulk as well as
those at the edge, contribute to motility by extending cryptic
lamellipodia (5) and exerting forces on the substrate (6). As
a consequence, stress builds up within the tissue. Some fea-
tures of this stress can be understood using analytical
models of the cell layer as an elastic sheet (7,8), but the
overall interplay among contractile forces, cell-cell adhe-
sion, and active traction forces remains poorly understood.

It is also still unclear how cells moving in a group align
their motion. One possibility is that cells, in addition to re-
sponding to an external chemoattractant (9) and exchanging
signaling molecules (10), interact via mechanical cues. Such
a mechanism was incorporated into our recent model for
collective cell migration. This model assumes that cells
tend to align the direction of their motility force with their
velocity, and showed that such a simple mechanism can
lead to large-scale velocity correlations (11). Several exper-
imentally observed phenomena, including swirling motion
of cells in the tissue, buildup of tensile stress throughout
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the tissue, and finger formation at the edge (3), can be ex-
plained by this model (11). Another possibility is that cells
align their motility according to the maximum principle
direction of intercellular stress (6,12,13). Experiments
showing that lamellipodia can develop in response to cell
stretching, support such a mechanism (14).

Unfortunately, unlike the recovery of the average normal
stress in a growing cell colony in one dimension that is
based on a simple force balance (6), stress on cell-cell junc-
tions cannot be directly measured in experiments. However,
in 2011 Tambe et al. (13) developed a method to recover
intercellular stress from measured traction forces on the
substrate. The calculated stress maps in two dimensions
required assumptions on the mechanical properties of the
tissue. Specifically, the method solves elastic equations to
recover two-dimensional stress maps from traction forces
(13,15). Tambe et al. show that their method is not very sen-
sitive to boundary conditions and the choice of a material
property (the Poisson ratio) (15). However, their analysis,
even with varying Poisson ratio, assumes that the cell layer
is an elastic material, and it remains unclear whether the
actual tissue, with cells dividing and moving actively, can
in fact be described in this manner, or if a description as a
fluid or viscoelastic material would be more appropriate.
And, how do errors in tissue rheology translate to errors in
the stress reconstruction?

Unlike in the experiments, simulations can provide both
traction forces on the substrate and forces acting between
cells. Therefore, we apply two different methods to calcu-
late the intercellular stress using our recently developed
collective cell migration model (11). This model has already
been shown to reproduce basic features of the experimental
data, and hence provides an excellent opportunity for
understanding the validity of the traction-force based
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reconstruction for the actual experimental data. We use the
same method as Tambe et al. (13) to recover the stress from
traction forces, and apply a method used in molecular dy-
namics simulations to calculate the stress from interparticle
forces (16). As we will show, both methods yield compara-
ble two-dimensional stress maps, providing an independent
validation of the experimental method.

METHODS

In our model simulations (Basan et al. (11,17) and see the Supporting Ma-
terial), every cell is represented by two particles. They repel each other with
the force Fexp, and when the distance between the particles crosses a certain
threshold, the cell can divide and two new particles are inserted. Particles of
different cells repel each other at short distances due to volume exclusion,
and attract at longer distances, mimicking cell-cell adhesion (represented
by Frepraa). Friction between the particles of one cell and different cells is
accounted for by dissipative forces F;, and Fg respectively. A noise
term 7 ensures that the total momentum is conserved (18). Intercellular
forces act within a distance R... Cells can be in a motile or in a nonmotile
state. The motility force m that cells exert in the motile state has a fixed
magnitude m and its direction is chosen randomly upon transition from
the nonmotile to the motile state. In the simulation, the motility forces align
with the velocities because the transition rate back to the nonmotile state is
chosen to be smaller if they are aligned. Cells are also subject to friction
with the substrate with force Fg. The equation of motion for one particle
then reads

dp
E =m+ FB + Fexp + Fint + Z (Frep/ad + Fdf + 17) (1)

r<Rec

The motility and friction force are exerted on the substrate and generate the
traction forces that are used to reconstitute the stress with the first method
(traction force method). All other forces are interparticle forces, and are
used to calculate the stress using the second method (Hardy stress method).

The traction force method is described in Tambe et al. (13,15). Force
balance in the tissue implies
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where T* = —T/h = (m + Fg)/h and h is the monolayer height. The traction
forces generated with our simulation model (Fig. 1, B and C) are very het-
erogeneous, similar to measured traction maps (6,13,15). Because the ex-
pressions in Eq. 2 consist of only two equations for the three unknown
components of the stress tensor o, the stress-strain relation of an elastic
material
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is assumed, where E is the Young’s modulus and » the Poisson ratio. The
stresses are calculated with finite element analysis (see, e.g., Liu and
Quek (19)), which corresponds to minimizing an energy functional. We as-
sume quadratic elements and determine the displacements u; at the grid
points by solving the system of linear equations KU = T, where K is the
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global stiffness matrix, U is the displacement vector, and T is the vector
of the traction forces at all grid points. The traction forces on the grid points
are determined by averaging the traction forces of the particles within a cir-
cle of radius Ry,.. The stress is calculated in the entire computational
domain and afterwards set zero in the areas where no cells are present
(and traction forces are zero). Boundary conditions are chosen as in Tambe
etal. (13,15) (zero displacement in the direction normal to the boundary of
the computational domain). We also implemented zero-stress boundary
conditions by restricting the computational domain to the actual tissue
and fixing the displacement of two points within the tissue (Fig. 3 C, and
see Fig. S2 C in the Supporting Material). The stresses calculated with
this method are independent of the choice of E, and varying the Poisson ra-
tio v between 0.2 and 0.5 has only negligible effects (see Fig. S2).

The second method was developed by Hardy to calculate stress in molec-
ular dynamics simulations (16). This method is more rigorous than the trac-
tion force method because it does not rely on any assumptions about the
tissue properties. The components of the stress tensor arising from interpar-
ticle forces are given by

Tas(R, 1) = f% ZFgrgB(rf,rf,R). )

iy

The contribution to the system-averaged stress by particles i and j is given
by the negative product of interparticle forces F and distance vectors r¥ =
r' — r/, normalized by the system volume. In Eq. 4, the contributions of par-
ticles i and j to the system-averaged stress are weighted by the bond func-
tion B such that only particles near the point R contribute to the stress at R.
If the line connecting particles i and j is within a distance Rys of R, the
weight must be

1
B(r',r,R) = /dAA(Ar’7+rj—R), )
0

whereas the localization function may be chosen to be

2 r\?
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We have verified that our results are insensitive to the exact choice of the
localization function. We have also verified that the kinetic stress, computed
following the methodology of Hardy (16), is negligible in our simulations.
Changing the distance Ry, may change the stress on small length scales but
does not influence the global stress pattern (see Fig. S1). It should be chosen
large enough to average over sufficiently many particles but small with
respect to the system size.

RESULTS AND DISCUSSION

We performed our simulations using the parameter set of
Basan et al. (11) (see also Table S1 in the Supporting Mate-
rial). Cells were seeded in our computational domain, and
allowed to divide. A snapshot of the simulation, for a colony
size of N = 14,094, is shown in Fig. | A. We then calculated
stress maps using the two different methods. Fig. 1, D and E,
shows the average normal pressure, which equals —(a,, +
gy,)/2, at each point. Red represents negative values (i.e.,
tensile stress), and blue represents positive values (i.e., pres-
sure). The maps of the maximum shear stress computed us-
ing the two different methods are displayed in Fig. 1, F and
G. This shear stress was computed as (0 ax — Tmin)/2, Where
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Omax and o, are the maximum and minimum principal
stresses.

A comparison between the maps reveals that the two
methods produce qualitatively similar results. Notably, the
location of prominent and large-scale areas of pressure
and tension are identical whereas differences between the
two maps can only be observed on small length scales. In
addition, magnitudes of the large-scale patterns are compa-
rable: the maximum values of normal stress differ by ~3%
whereas the maximum values of shear stress differ by
20%. We can quantify the agreement between the stress
maps by calculating the correlation as

= (X)) /(S e,
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of the stress tensor computed with the two different
methods using a color scale ranging from O (blue,
maximal agreement) to 5 po (red, minimal agree-
ment). (J) Average of o,, along the y direction.
(Blue line) Calculated from traction forces (map
D). (Red line) Calculated from intercellular forces
(map E). (Cyan line) Sum of the traction forces
in the x direction averaged along the y direction
(one-dimensional stress recovery method).

where ¢; is the average normal pressure or the maximum
shear stress at each point for the stress maps obtained using
the traction force method (7) and the Hardy method (H),
respectively. The comparison yields ¢ = 0.66 for the
pressure and ¢ = 0.79 for the shear map. To further
quantify the agreement between the stress tensors obtained
with both methods, we computed for each point the absolute
error

ol ot

XX XX

T H
a}'y a}'}’

T H
GXY 0-'\3’

€= + +

The result is shown in Fig. | H using a color code with red
corresponding to maximum values of € and blue correspond-
ing to minimal values of e. Aside from a few areas with
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small spatial scale discrepancies, the agreement between the
two methods is quite satisfactory.

To gain further insight, we calculated the averaged one-
dimensional stress profiles of the normal stress in the x di-
rection. Fig. 1 J shows o,, averaged over the y direction
for the traction force method (blue curve) and the Hardy
method (red curve). We see that the pressure minimum is
slightly lower for the traction stress but the differences are
only marginal. We also calculated the sum of the average
traction forces in x direction along this direction (cyan curve
in Fig. 1 J), which corresponds to the one-dimensional stress
recovery method reported in Trepat et al. (6) that does not
require assumptions on material properties. The agreement
with the two other methods is again very good. The sum
of the traction forces in x direction (cyan curve in Fig. 1
J) does not exactly come back to zero, which indicates
that there is a net force acting on the whole tissue (a similar
effect was observed with the experimental data, see Trepat
et al. (6). The total force fluctuates around zero due to the
random choice of the direction of the motility force during
transitions. However, we confirmed that the total force
becomes zero when averaging over longer times (see
Fig. S3). Deviations of the averaged net-traction force
from zero are small because motility forces are largely
balanced by friction forces, and align radially in circular
spreading colonies.
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The agreement between the two methods persists for a
wide range of parameters. We have verified that increasing
the division rate, the inclusion of a death rate into the
model, and increasing the particle-particle adhesion do
not significantly affect the agreement between the two
methods. However, it does depend on having significant
forces acting on the substrate. In Fig. 2, we show simula-
tions with a different set of parameters, and explore the
effect of decreasing the magnitude of the motility force
on the substrate. The agreement becomes worse as the
motility force decreases (Fig. 2 G). At first, the patterns still
agree, but the traction-force method yields very weak mag-
nitudes of stresses (Fig. 2, C and D). At very low motility
forces (Fig. 2, E and F), the traction forces are almost
zero and consequently stresses calculated with the traction
force method are almost zero. However, the Hardy method
still gives nonzero stresses. We thus conclude that stress
patterns do not agree at very low traction forces, i.e.,
when stresses are dominantly created by intercellular
forces. None of the experiments on actively growing tissues
appear to reside in this range of force ratios, and hence the
reconstructions from the experimental data should not be
affected by this caveat.

As already mentioned, our model has been shown to
reproduce many features of the tissue data. In particular,
our model reproduces the heterogeneous traction force

m=0.2

Hardy method
-

FIGURE 2 Maps of the average normal stress for
different values of the magnitude of the motility
force m. The agreement between both methods for
stress calculation becomes worse as the strength
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maps observed in large, motile tissues (6,13,15), and the
stress maps generated with our simulation compare well
with experimental results. In the model, motility forces
align radially in spreading colonies because they tend to
align with the velocities, and particles can only move
away from the center. Tension builds up toward the center
because opposing motility forces at opposite edges of the
sheet pull on the adhering particles. Negative stress values
(red areas) in Figs. 1 and 2 correspond to tensile stresses.
In experimental studies, stresses were shown to be predom-
inantly tensile and highest in the center of the tissue (6), or
to be heterogeneous (but mostly tensile) (6,12). Both
effects are observed with our simulation as well. Unlike
in experiments, we do occasionally observe areas of high
pressure, and a layer at the tissue edge where pressure is
dominating due to cell division (Fig. 1 J). Small colonies
are completely under tension whereas pressure builds up
at the edge in larger colonies as the radial component of
the locally averaged motility force reaches its maximum
value (see also the discussion in Basan et al. (11)). It
was also shown in experiments that the dominance of ten-
sion is dependent on cell-cell adhesion. Tension decreases
upon application of a calcium chelator that disturbs con-
tacts between neighboring cells (13). A similar effect is
observed in our simulations (Fig. 3). In the simulation,
decreasing cell-cell adhesion allows the two particles
constituting a cell to move apart faster, which effectively
increases the division rate, and leads to a dominance of
pressure.

With pressure dominating in the stress maps (Fig. 3),
normal stresses calculated with the traction force method
(Fig. 3 B) are slightly shifted toward negative values due
to the choice of boundary conditions. That is, because we as-
sume zero displacement at the boundary of the quadratic
domain, pressure in the center has to be compensated for
by tension at the edge of the tissue. The agreement between
the methods becomes better when choosing a zero-stress
boundary condition at the tissue edge in the finite-element
analysis instead (Fig. 3 C).

Traction force method

Traction force method (stress—free boundary)

Hardy method

A B c 2
e
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FIGURE 3 Average normal stresses are strongly dominated by pressure
upon decreasing the cell-cell adhesion. Parameters are as in Fig. 2, A and
B, but the strength of cell-cell adhesion is f; = 0.9f1*. (A) Stress calculated
with the Hardy method. (B) Stress calculated from traction forces. Due to
the choice of boundary conditions (zero displacement normal to boundary
of quadratic domain), the traction force method does not capture the correct
magnitude of stresses. (C) Stress calculated from traction forces with a
zero-stress boundary condition at the tissue edge.
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We should note that having vanishing traction forces on
the substrate with vanishing motility forces (as in Fig. 2, E
and F) might actually not be a biological relevant case. Cells
in quiescent layers that are apparently nonmoving still exert
large traction forces on the substrate. Measurements of trac-
tion forces exerted by groups of 2-30 MDCK cells or kera-
tinocytes reveal that traction forces are largest at the outer
boundary of the cell colonies (20-22). The distribution of
traction forces in those cases is reminiscent of the force pat-
terns observed with single cells (see, e.g., Wang et al. (23)),
which supports the concept of the adhering cell cluster
forming a supercell (24). Models describing the cell
colonies as elastic sheets show that cell-cell adhesion and
intracellular acto-myosin contraction are sufficient for
generating the observed force pattern (7,8,20-22), and no
explicit cell motility is required.

The tissues in the earlier-mentioned studies from Trepat
et al. (6) and Tambe et al. (13,15) consist of >5000 cells
(6). Those large sheets clearly rearrange due to cell division
and collective migration. The traction forces in the substrate
are still largest close to the edges but also measurable deep
within the tissue. They are overall very heterogeneous,
which has been attributed to the active motility of the cells.
The seemingly different results for small nonmotile and
large motile colonies could partly be explained by a differ-
ence in the strength of cell-cell adhesion. Mertz et al. (22)
show that the predominant location of traction forces
changes from the colony boundary to the sites of cell-cell
contacts as the adhesion strength decreases.

Because cells are represented by only two particles in our
simulation model, it obviously does not fully describe the
traction force pattern of very small colonies, which is domi-
nated by the force distribution of single cells. For suffi-
ciently large colonies, we expect traction force patterns to
become increasingly heterogeneous as the size of the colony
grows (compare Fig. 3 B, in Basan et al. (11), and Fig. 1, B
and C, here). Although exerting a motility force does not
necessarily entail motion of a cell when it is balanced by
motility forces from other adhering cells, alignment of trac-
tion forces with velocities promotes persistent motion of
cells. Therefore, our model describes motile cells and is
not suitable for quiescent cell layers. In order to encompass
quiescent phenotypes, the model could be extended by a
static term that leads to contractile substrate forces also in
the limit of nonmoving cells.

In a recent experiment, Kim et al. (25) studied a sheet
of cells migrating collectively toward a circular area of
noncoated substrate. Cells can adhere and move every-
where except on this circular island. The tissue moves uni-
formly in one direction, splits in front of the island, and
rejoins at the rear. Whereas traction forces and velocities
are on average aligned in freely moving sheets, a surpris-
ing effect is observed at the boundary of the noncoated
island: traction forces are always aligned perpendicular
to the island boundary. It seems that cells permanently
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try to invade the empty space. This behavior is particularly
puzzling at the downstream stagnation point, where the tis-
sue rejoins, because velocity and traction forces become
uncoupled here, and point in opposite directions (25).
Due to the alignment of the motility forces with the veloc-
ity in our model, we do not expect our simulation in the
presented form to be able to reproduce those experimental
findings. A static contraction of the sheet adhered to the
substrate, or an active alignment of motility forces toward
empty space, or some form of leader cells, need to be
introduced in our model, and this is under investigation
as of this writing. However, we are confident that those
additional alignment effects of the motility forces do not
affect the agreement between the two stress reconstitution
methods.

CONCLUSION

We have compared stress maps obtained using a method
suitable for experimental traction force microscopy versus
those obtained by a method that directly computes the
intercellular stress from the simulation data. Our results
show that both methods produce qualitatively and quantita-
tively similar maps as long as traction forces are not too
weak. Although in general the traction force method cannot
resolve the full three-component stress tensor in the two-
dimensional tissue, our work shows that nevertheless it
provides a valuable estimation of local stresses within the
tissue. The traction force estimation shows a remarkable
agreement with the real stress field in a manner that
appears to be relatively independent of tissue rheology in
the model. A possible explanation for this agreement is
the presence of low shear stresses. For zero shear stress,
no stress-strain relation has to be assumed to solve the sys-
tem in Eq. 2, and hence the reconstruction becomes exact.
Shear stresses are typically low in our model because the
interparticle forces are taken to be central forces. In addi-
tion, we make an assumption on the alignment mechanism
of the motility force with the cell velocity. This mechanism
is slightly different from the concept of plithotaxis, which
has been previously proposed, and which assumes that the
cellular motility aligns with the direction of principal stress
in the tissue (12,13). Apparently, our alignment mechanism
tends to create cells that move in clusters with little
shearing between them. Although a model can never
exactly describe the behavior of a real biological tissue,
our assumptions yield tissue morphologies, flow fields
(see Basan et al. (17)), and stress maps that agree well
with experimental results. The success of our model and
the demonstration here that traction-force-based recon-
struction of intercellular stresses works well in the model
gives us confidence that the same is in fact true for the
data-based reconstruction, where obviously one cannot
use the Hardy stress alternative to provide a direct
confirmation.
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SUPPORTING MATERIAL

Model description, results for varying parameters for stress computation,
one table, and three figures are available at http://www.biophysj.org/
biophysj/supplemental/S0006-3495(14)00680-8.
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