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We present a novel algorithm for modeling electrical wave propagation in anatomical models of the
heart. The algorithm uses a phase-field approach that represents the boundaries between the heart
muscle and the surrounding medium as a spatially diffuse interface of finite thickness. The chief
advantage of this method is to automatically handle the boundary conditions of the voltage in
complex geometries without the need to track the location of these boundaries explicitly. The
algorithm is shown to converge accurately in nontrivial test geometries with no-fluxszero normal
currentd boundary conditions as the width of the diffuse interface becomes small compared to the
width of the cardiac action potential wavefront. Moreover, the method is illustrated for anatomically
realistic models of isolated rabbit and canine ventricles as well as human atria. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1840311g

The mechanisms for the generation and maintenance of
cardiac arrhythmias, the leading cause of death in the
industrialized world, are poorly understood. Computer
modeling can furnish valuable information, provided that
the models used are sufficiently realistic. Modeling elec-
trical wave propagation in models of cardiac geometries
requires not only an accurate description of the electro-
physiological properties of the heart but also a precise
implementation of the geometrical structure and fiber
orientation within the tissue. This paper addresses these
geometrical requirements and presents a new algorithm
to model wave propagation in anatomical models of the
heart. The algorithm is based on the diffuse interface
phase-field approach that has been used in a wide range
of contexts. Simulation results are presented that quan-
tify the accuracy of the method and illustrate its applica-
tion to realistic heart geometries ranging from rabbit and
canine ventricles to the human atria.

I. INTRODUCTION

Despite intense research over the past decades, the pre-
cise mechanisms for the onset and maintenance of fibrillation
remain poorly understood. Reentrant excitations, which oc-
cur when the propagation of the electric wave is blocked in
some directions,1,2 causing the wave front to curl and reenter
previously excited tissue, are thought to play an important
role in many cases.3–5 Computer models are important tools
in the analysis of arrhythmia mechanisms because, unlike
most experiments, simulations can easily provide informa-
tion on both surface and interior activity. However, most

computational studies of reentrant arrhythmias have been
performed in simplified domains to focus on understanding
reentry as a function of electrophysiological parameters us-
ing various existing models of cardiac cell membrane
dynamics.6–9 Nevertheless, it is being increasingly recog-
nized that understanding the evolution of cardiac arrhythmias
requires analyzing the role of anatomy as well. For example,
numerical studies have shown that the anisotropic fiber rota-
tion of the ventricles can alter the orientation of reentrant
waves10 and can even destabilize them.11–13 Similarly, peri-
odic boundary conditions9 and surface curvature14 can com-
plicate reentry in some cases.

Numerical modeling of reentrant arrhythmias using real-
istic three-dimensional cardiac geometries and ionic cell
models has become increasingly feasible due to rapid ad-
vances in computer power. The earliest simulations of elec-
trical activity in realistic heart structures in the 1960s com-
bined cellular automata using varying degrees of coarseness
with structures extrapolated from published cross sections of
canine heartss216 elementsd15 and, later, digitized from a
human hearts27 000 3 mm cubic blocksd.16 Increasing levels
of complexity have been added to simulations using realistic
cardiac anatomy with the incorporation of anisotropy,17 the
replacement of cellular automata with ionic cell models,18

and the use of data sets with fiber orientations obtained from
high-resolution dissections of canine19 and rabbit20

ventricles.14,21–23Harrild and Henriquez have also developed
and used a realistic structural and electrophysiological model
of human atria.24
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The use of anatomical models of the heart requires the
accurate solution of boundary conditions on the voltage in
complex shapes, e.g., a no-fluxszero normal currentd bound-
ary condition in the simplest case where the heart is isolated.
In finite-difference algorithms, this major difficulty has been
overcome so far by defining additional external grid points.
The values of these ghost points are then determined in the
most convenient manner.21,23 An undesirable feature of this
approach, however, is that it is possible for the same ghost
cell to have different values depending on which neighboring
cell is being updated. Note, however, that it is possible to
implement a finite-difference scheme with only interior grid
points using a recently introduced immersed interface
method with fiber anisotropy in two25 and three
dimensions.26 Another commonly used technique, finite-
element methods, is able to handle nonflux boundary condi-
tions naturally.14,22,27However, these methods are generally
slower than finite differences for equivalent grid spacings
and are more cumbersome to implement.

The purpose of this paper is to present a new algorithm
that accurately implements no-flux boundary conditions in
arbitrary geometries, and which can, therefore, be used to
model wave propagation in realistic models of cardiac
anatomy. Our algorithm is based on the phase-field approach
that has been applied successfully to a wide variety of prob-
lems including dendritic solidification,28 viscous fingering,29

crack propagation,30,31 the tumbling of vesicles32 and intra-
cellular dynamics.33 This method has the chief advantage
that it avoids the need to track the interface explicitly by
introducing an auxiliary field that makes the interface spa-
tially diffuse. This procedure introduces a new length scale,
the interface width. Therefore, results are fully converged
only if they are independent of this width for sufficiently thin
interfaces. This paper will demonstrate that it is computa-
tionally feasible to achieve this convergence using a simple
finite-difference discretization of the continuous propagation
models. Here, we use this approach to model only fixed ge-
ometries with stationary boundaries but, in principle, it can
be extended to model moving boundaries. This extension
appears very promising to model the full electromechanically
contracting heart by coupling the dynamics of the phase field
to the displacement field in order to include the effect of
contractile forces, as well as to model blood flow in the
exterior domain.

The paper is organized as follows. In Sec. II we intro-
duce the phase-field method and discuss the equations gov-
erning the electrical activity. In Sec. III we quantify the ac-
curacy of our method through the investigation of electrical
wave propagation in nontrivial geometries. In Sec. IV we
present results of simulations using models of rabbit ven-
tricles, canine ventricles and human atria. Finally, Sec. V
contains our conclusions and a discussion of some future
extensions.

II. METHODS

The dynamics of the transmembrane potentialV smVd is
given by the standard continuous cable equation:34

Cm
]V

]t
= ¹ ·

s

Sv
¹ V − I ion, s1d

whereCm smF cm−2d is the membrane capacitance,¹ is the
gradient operator,I ion smA cm−2d is the total membrane ionic
current,s is the conductivity tensor, andSv is the surface to
volume ratio. It is also convenient to define the anisotropic
diffusion tensorD=s / sSvCmd, whosed3d elementsswhere
d is the dimension of spaced depend on the local fiber orien-
tation that generally varies in space in the heart.

For an isolated tissue, there is zero current flow normal
to the tissue boundaries:

n ·D ¹ V = 0, s2d

wheren is the unit vector normal to the heart surface. Note
that this boundary condition only reduces to the standard
Neumann boundary conditionn ·¹V=0 when diffusion is
isotropic. The term “no-flux” is often associated with this
Neumann boundary condition. It is used here, however, to
refer to the more general boundary condition of Eq.s2d with
the interpretation that it corresponds to no current flux nor-
mal to the boundary. To date, most numerical studies of car-
diac wave propagation have focused on simplified geom-
etries including two-dimensional sheets and three-
dimensional slabs of tissuessee., e.g., Refs. 6–9d. For these
simplified geometries, it is straightforward to implement no-
flux boundary conditions, even when including tissue aniso-
tropy. For example, in a slab of tissue, anisotropy can be
incorporated easily when the tissue fibers are parallel to faces
of the slab.11,12,35 In contrast, hearts have much more com-
plicated geometries that include curved boundaries and com-
plicated fiber orientations.36

To treat irregular geometries using the phase-field meth-
odology, we introduce an auxiliary fieldf that takes on dif-
ferent values inside and outside cardiac tissue and varies
smoothly across a thin diffusive interface connecting these
two regions. Here, we choose for simplicityf=1 in the in-
terior of the heart andf=0 in the exterior of the heart.

As has been shown in various applications of the phase-
field method,28,37 the precise form of the phase-field profile
in the thin interface region is not critical to the algorithm. In
this paper, we have chosen to calculate the phase field via a
relaxation method. For this, the heart is placed in a compu-
tational box that can accommodate its size. In the interior
and the exterior of the heart,f is initially set to 1 and 0,
respectively. The smooth values off, which are to be used
later in wave propagation simulations, are then determined
by solving the equation

]f

]t
= j2¹2f −

]Gsfd
]f

, s3d

wherej is a parameter that controls the width of the interface
and the functionGsfd has the form of a double-well poten-
tial with minima atf=0 andf=1. Therefore, it attempts to
maintainf at the values 1 and 0 in the interior and exterior
regions, respectively, whereas the diffusion operator tends to
smooth out the spatial discontinuity off at the boundary
between these two regions. The balance between these two
terms creates a spatially diffuse interface with a width that
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depends on the control parameterj. For the standard form of
a double-well potential,

Gsfd = −
s2f − 1d2

4
+

s2f − 1d4

8
, s4d

the one-dimensional solution off across the interface in an
infinite domain is given by

fsxd = 1
2 + 1

2 tanhssa − xd/jd, s5d

which corresponds to an interface centered atx=a fi.e.,
where fsad=1/2g. Note that Eq.s3d can be written in the
variational form]f /]t=−dF /df, whereF is the Lyapunov
functionalF=edVfj2u¹fu2/2+Gsfdg; edV denotes the spa-
tial integral over the whole computational volume. As long
as there are no fluxes across boundaries at infinity, the
Lyapunov functional decreases monotonically with time
sdF /dtø0d.

In practice, our domains have finite extent, and iterating
Eq. s3d with initial values off as described above can lead to
the filling of anatomical voids: subdomains where the initial
condition isf=0 can be replaced byf=1. Thus, we inte-
grate Eq.s3d until a reasonably smooth interface has been
created. Typically, we used a time step ofDt=0.01 ms and a
spatial discretization ofDx=0.025 cm. An example of this
integration performed on an arbitrary line across a slice of a
rabbit ventricular structure20 using j=0.05 cm is shown in
Fig. 1. The width of the diffusive interface is approximately
4j, as can be seen in Fig. 1scd, which shows the phase field
for three different values ofj. As explained below, the value
of j controls the error in the algorithm.

The calculated stationary profile off is used to interpo-
late smoothly between the electrical properties of the interior
and exterior regions. Because the membrane capacitance, the
membrane current, and the conductivity vanish in the exte-
rior domain, the simplest interpolation consists of making the

substitutionsCm→fCm, I ion→fI ion, ands→fs in Eq. s1d,
respectively. After dividing both sides byCm, this equation
can then be rewritten in the following form:

f
]V

]t
= ¹ · fDf ¹ Vg − f

I ion

Cm
. s6d

To show that this extension can correctly incorporate the
boundary conditions, we consider for simplicity a one-
dimensional domain with a boundary atx=a as illustrated in
Fig. 1scd. Integrating Eq.s6d over the boundary yields

DU ]V

]x
U

x=a−j

< −E
a−j

a+j

dxfF ]V

]t
+

I ion

Cm
G , s7d

sincefsa−jd<1 andfsa+jd<0. If we neglect the spatial
variation of the right-hand side of Eq.s7d, we find

U ]V

]x
U

x=a
, Fj, s8d

where the prefactorF is discussed below. Thus, in the so-
called sharp interface limitj→0, the no-flux boundary con-
dition is recovered. In addition, Eq.s6d reduces to Eq.s1d in
the interior of the heart wheref=1.

Note that the elements of the diffusion tensor, or equiva-
lently the three componentssfx, fy, fzd of the fiber orientation
from which these elements can be calculated, are only
known in an anatomical heart model at the points in the
interior and on the surface of the tissue wheref=1 origi-
nally, beforef is relaxed using Eq.s3d, as shown for repre-
sentative slices in Figs. 2sad and 2sbd. To solve Eq.s6d, how-
ever, these elements must be obtained for points inside the
diffuse interface region that lie in the exterior region where
f was originally zero and where no fiber information exists.
Fiber orientations at these points are obtained in an iterative
manner. In each iteration, fiber information is determined for
all points which have at least one neighbor with fiber orien-

FIG. 1. sColor onlined. sad Example of the phase fieldf along a one-dimensional section from the slice of rabbit ventricles shown insbd. The solid line
indicates the original values of 1 or 0 assigned tof and the open circles represent the final steady-state values off after solving Eq.s3d usingj=0.05 cm.
scd Different solutions forf usingj=0.075, 0.05, and 0.025 cm corresponding to diamonds, circles and stars, respectively. Note that for the choice ofG in
Eq. s3d, f matchess1+tanhss2.3625−xd /jdd /2, as shown by the long dashed curve when usingj=0.05 cm and the short dashed curve when usingj
=0.075 cm. The width of the interface is approximately 4j.
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tation values and whose fiber orientations are not yet defined
by averaging the values of each fiber direction componentfx,
fy, and fz for all neighbors with defined values and normal-
izing the resultant vector. The iterative process is continued
until all points in the enlarged domain have fiber informa-
tion. Figure 2scd shows the three components of both the
originally definedswhite aread and the iteratively obtained
sgray aread fiber orientation vectors and demonstrates conti-
nuity in fiber direction.

It is important to note that our algorithm is independent
of the discretization and integration method used to solve Eq.
s6d numerically.37 In this paper, we use a finite-difference
scheme with a uniform spacingDx. The time integration is
carried out with an explicit Euler method. For clarity of ex-
position, we describe the algorithm in one dimension and
reserve the details of the implementation in higher dimen-
sions for Appendix A. The governing equation can be written
without the local ionic current terms asfsdV/dtd=]J/]x,
whereJ=Dfs]V/]xd is a flux. We calculate the derivative of
this flux on a mesh with nodes that are on the midpoints of
the lines connecting the gridpoints. Thus, for gridpointi, the
derivative of the flux is written as

]Ji

]x
=

Ji+1/2 − Ji−1/2

Dx
. s9d

In this expression,Ji+1/2 can be written as

1

2
ssDfdi + sDfdi+1d

Vi+1 − Vi

Dx
, s10d

where we have taken the average of the productDf as the
value at the midpoint. Combined with a similar expression
for Ji−1/2, a finite-difference scheme can be obtained and ex-
pressed as

fi dVi

dt
= Fisi − 1dVi−1 + FisidVi + Fisi + 1dVi+1, s11d

where the prefactorsFmsnd are functions of the phase field
and the diffusion tensor using terms at pointn to calculate
values for pointm. This discretization scheme, together with
the fact that the phase field approaches 0 at the edges of the

computation box, ensures thatefV dxW is conserved. For the
full three-dimensionals3Dd simulations, this procedure in-
cludes the other two directions, taking into account the cross-
derivatives to incorporate the anisotropic nature of the tissue.
This results in an expression for the time derivative ofVi,j ,k

that is a weighted average of its 6 nearest neighbors, its 12
next-nearest neighbors and itself. Explicit expressions for
these weights are given in Appendix A. Because the fiber
orientation changes from point to point, these weights must
be calculated for each point in the tissue, but these weighting
values can be computed once and stored in memory using 19
three-dimensional matrices.

Because the values of the phase field away from the
heart surface approach zero exponentially on a scale,j, it is
not necessary to solve Eq.s6d over the whole computational
domain. In practice, no calculations are performed below a
cut-off value forf close to zero, which results in a substan-
tial computational saving. We have verified that no signifi-
cant alterations in the solution or wave propagation speed
occur for cut-off values off=1310−4 or smaller when us-
ing j=0.025 cmsthe cut-off value should be decreased asj
is reducedd. For our typical choices ofj, Dx, and the value of
the cutoff an average of roughly three to four relevant grid-
points are added to the actual domain in the direction normal
to the surface.

For the descriptions of the ionic currentsI ion in Eq. s1d, a
wide range of models with varying degrees of detail and
complexity can be used. To show that the phase-field method
can be used for a variety of models, we use here two recent
ionic models, the Nygrenet al. human atrial model38 and the
Fox et al. canine ventricular model,39 shown in Figs. 3sad
and 3sbd, respectively. In addition, we use a four-variable
phenomenological model with intermediate detail12 whose
parameters can be varied to reproduce the action potential
and rate adaptations obtained in experiments and in detailed
ionic models.9,40,41In this paper, parameters are set to repro-
duce action potentials similar to experimental recordings of
canine epicardial cellsfsee Fig. 3scdg while producing a dif-
ferent maximum upstroke velocity than the Foxet al. model
fsee Fig. 3sadg, thereby allowing analysis of the effect of
upstroke steepness on the accuracy of the phase-field method

FIG. 2. sColor onlined. Fiber orientation information for the anatomical model of rabbit ventricles of Ref. 20.sad andsbd Slices 2 cmsad and 1.5 cmsbd from
the apex showing the projections of the three-dimensional fibers in thex−y plane.scd The three components of the fiber orientation vectors along the line in
sbd for points inside the original domainswhite area, length between 0.57 and 0.9 cmd and points in the enlarged domainsgray areasd whose fiber values
originally were undefined. Continuity is present in all components. See text for details of the iterative process used to determine values for previously
undefined fiber orientations.
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using a variety of models. The upstrokes of the three models
are shown in Fig. 3sdd, and the values ofdV/dtmax are 106,
270, and 161 V/s for the Nygrenet al., Fox et al., and phe-
nomenological canine epicardial models, respectively. Note
that the maximum upstroke velocity is higher at any physical
boundary with a no-flux boundary condition. In this case, the
values of dV/dtmax at the boundary are 193, 368, and
237 V/s for the Nygrenet al., Fox et al., and phenomeno-
logical canine epicardial models, respectively.

III. APPLICATION TO SAMPLE GEOMETRIES

A. One-dimensional cable

To illustrate the phase-field method and quantify its ac-
curacy, we first apply it to a one-dimensional cable with
zero-flux boundary conditions imposed by the phase field. A
5 cm long cable was embedded in a longer cable of length
6 cm and the middle of the domain was briefly excited to
initiate two waves propagating toward the two ends of the
cable. Figure 4 shows the resulting membrane potentialV for

a range of times during the depolarizationsad and repolariza-
tion sbd. For comparison, the simulation results using a stan-
dard second-order-accurate finite-difference implementation
of the boundary conditions are plotted as a solid line. Figure
4scd shows the action potential at the right boundary using
finite differencesssolidd and the phase-field methodsdottedd.
The error in the maximum upstroke velocitydV/dtmax using
the phase-field method is about 2%, as shown in Fig. 5sad.

Figure 5 quantifies the accuracy of the cable solution of
the three models as a function of the control parameterj by
measuring the relative error in the maximum upstroke veloc-
ity sad, the cumulative error in the action potentialsbd, and
the relative error in action potential durationscd at the
boundary, where the errors are largest. As expected, the
maximum errors decrease asj and, consequently, the width
of the phase field decrease. For the value ofj shown in Fig.
4sad, 0.015 cm, the relative error in the maximum upstroke
velocity is less than 5% for all three models, and it is less
than 10% forj=0.025 cm. The other two error quantities
indicate deviations from the finite-difference action potential

FIG. 3. Representative action poten-
tials as measured in uniform cables
from sad the Nygrenet al.human atrial
model sRef. 38d, sbd the Foxet al. ca-
nine ventricular modelsRef. 39d, and
scd the phenomenological ionic model
in Ref. 12 with parameters to repro-
duce canine epicardial cells. Note that
the Foxet al. model has a faster up-
stroke than the phenomenological
modelsvalues ofdV/dtmax are 270 and
161 V/s, respectivelyd. sdd The up-
strokes corresponding to the models
shown insad slong dashesd, sbd ssolidd,
andscd sdashesd. Models with different
values ofdV/dtmax are used to show
its effect on the accuracy of the solu-
tions obtained using the phase-field
methodssee Fig. 5d.

FIG. 4. Membrane potential distribution along a 5 cm-long cable at different times using the phase-field method withDx=0.025 cm,Dt=0.05 ms, andj
=0.015 cmssymbolsd and using a standard zero-flux finite-difference code with the same discretization. The initial condition is a brief excitation at the center
of the cable att=0. This produces a symmetric excitation that propagates to the edges.sad Voltage distribution during depolarizationsall voltage values are
.−10 mVd. Initial time is t=40 ms, final time ist=58 ms, and the voltage distribution is plotted every 3 ms.sbd Voltage distribution during repolarizationsall
voltage values are,0 mVd. Initial time is t=110 ms, final time ist=275 ms, and the voltage profile is plotted every 15 ms.scd Comparison of action
potentials at the boundary using finite differencesssolidd and the phase-field methodsdottedd, with the two upstrokes highlighted in the inset. The phenom-
enological model is used.
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shape, and both errors rise steadily asj is increased but are
significantly smaller than the error in maximum upstroke ve-
locity. This is logical when one considers Eqs.s7d and s8d:
During the upstroke phase of the action potential, the right-

hand side of Eq.s7d is large and the prefactorF in Eq. s8d is
maximal. However, since this only occurs during a very
small time interval, the error in quantities measured over the
entire action potential are much smaller. We note that the
error becomes large when the width of the interface becomes
small relative to the the spatial resolutionDx ssee Fig. 4d.

B. Two-dimensional irregular tissue geometries

In two dimensions, it is useful to test the accuracy of the
method for nontrivial geometries that can be solved using
both a standard finite-difference code with the no-flux
boundary condition applied at a sharp boundary and the
phase-field method discretized with finite differences on a
two-dimensional lattice. For isotropic tissue, an annular ge-
ometry with no-flux boundary conditions can be solved eas-
ily using finite differences after transforming Eq.s1d to polar
coordinates as follows:

]V

]t
= DF1

r

]

]r
r

]V

]r
+

1

r2

]2V

]2r
G −

I ion

Cm
. s12d

Figure 6 shows propagation in a quarter-annulus with an
outer radius of 5 cm and an inner radius of 1.5 cm. The
phase-field algorithm is implemented on a 2003200 square
grid with a grid spacing ofDx=0.025 cm. The tissue was
briefly stimulated in the middle of the tissue and snapshots of
the color-coded membrane potential are shown. A compari-
son of phase-field and finite-difference simulations in polar
coordinates is shown in Fig. 6sed, where the contour
V=−60 mV of the wave front is plotted at different times for
the phase fieldssymbolsd and for the finite-difference algo-
rithm ssolid linesd. The same geometry is shown in Fig. 6sad,
but in this case the excitation was initiated from the lower
right corner. Agreement between wave front velocity in the
two methods is very good in both cases, with less than 1%
difference using the phase-field algorithm. The precise dif-
ference in the two methods depends slightly on the location
within the tissue due to the fact that the polar coordinate
discretization leads to a nonuniform grid spacing relative to a
Cartesian grid because the grid spacing on the inner radius of
the annulus is smaller than the grid spacing on the outer
radius.

To make the geometry more complex in Cartesian coor-
dinates, a quarter-annulus with an irregular-shaped hole can
be used, as shown in Fig. 7sbd. Note that despite its complex
shape, the boundaries of this hole can be specified exactly in
polar coordinates. As before, the wave front velocity ob-
tained using the phase-field algorithm matches that obtained
using the polar finite-difference algorithm within 1%. Fur-
thermore, we have verified that an activation in the phase-
field interface cannot stimulate the computational domain.

Because cardiac tissue is highly anisotropic, with propa-
gation being two to three times faster along muscle fibers
than across them, it is important to establish the accuracy of
the phase-field method for domains with anisotropic conduc-
tion. Figure 7scd shows a square containing a hole with fibers
at an angle of −53° relative to the vertical axis, a domain in
which no-flux conditions can be implemented for all bound-
aries using finite differences. Excellent agreement is obtained

FIG. 5. sad Relative error in the maximum upstroke velocitysdV/dtdmax as a
function of the phase field widthj for one-dimensional cable simulations as
shown in Fig. 4 for the Foxet al. sshort dashesd, Nygrenet al. slong dashesd,
and phenomenologicalssolidd models. Note that for the values ofj used
throughout this paper, the relative error is less than 10%.sbd Cumulative
error in action potential for the same cases. The cumulative error is obtained
by computing the absolute error in voltage over the time course of one
action potential and then computing the ratio of the area under that curve to
the area under the curve of the action potential calculated with the finite
difference code.scd Relative error in action potential duration for the same
cases. In all cases,Dx=0.025 cm andDt=0.05 ms. Slight increases in error
can be observed for the smallest values ofj because for these values the
interface is very steep and is not adequately resolved by the fixedDx used.
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between the phase-field and reference solutions for values of
j,0.03 cm, as can be seen in Fig. 8. The relative error in the
wave front velocity is below 10% over this range ofj.

To summarize, in one- and two-dimensional regular and
irregular domains with and without fiber anisotropy, the
phase-field method yields accurate results for both the maxi-
mum upstroke velocity and the propagation speed.

IV. APPLICATION TO ANATOMICAL MODELS IN
THREE DIMENSIONS

Having demonstrated the convergence of the phase field
method in one- and two-dimensional domains, we now illus-
trate its application to more complex anatomical structures in
three dimensions. Two of the data sets used here have been
obtained by manually subdividing ventricles of animals
scanine19 and rabbit20d into thin slices, recording the fiber
orientation and geometry throughout the slices, and recon-
structing the original anatomy into a finite element model in
prolate spheroidal coordinates following a computational
procedure developed by Nielsenet al.19 We also use a model
of human atria that was originally digitized and recon-
structed using finite elements.24 For the simulations included
here using the phase-field method, the finite-element models,
including fiber orientation data for the two ventricular mod-
els, were interpolated and mapped onto a regular Cartesian
grid with a grid spacing of 0.025 cm. The structure was then
embedded in a computational box slightly larger than the
structure, and the phase field was computed following Eq.
s3d usingj=0.025 cm. Note that because the phase field cre-
ates additional computational points near the surface, it is

necessary to determine fiber orientation values at these
points as explained in Sec. II. Other details of the fiber
implementation are given in Appendix B.

Figure 9sad shows complex behavior resulting from a
scroll wave in the rabbit ventricular geometry using the
Fenton–Karma three-variable model12 with parameters ad-
justed to reproduce the electrophysiological effects of the
electromechanical uncoupling agent cytochalasin-D in
rabbit.42 The computational nodes withf.10−4 fill 30% of
a 13831303152 box, and an anisotropy ratio of 5:1 is used
sDparallel/Dperpendicular=0.001/0.0002d. Figure 9sbd shows a
series of eight slabs for the same simulation 200 ms later to
illustrate the irregular electrical activity in the interior. The
scroll wave can be seen propagating around both ventricles
and across the septum. One second of simulation time takes
approximately 1.5 hours on a single 667 GHz Alpha
processor.

Figure 9scd shows simple propagation in the larger ca-
nine ventricular model, where computational nodes withf
.10−4 occupy 26% of a 40033203320 box. In this case,
we have incorporated a simple Purkinje network to ensure a
realistic activation sequence, similar to that detailed by Dur-
rer et al.43 In addition, the phenomenological model used
includes three variations to represent endocardial, epicardial,
and midmyocardial ventricular cells, which are distributed
throughout the ventricular wall.40 The midmyocardial cells
can be observed in the interior of the wall where higher
voltages, related to prolonged action potentials, are present.
A typical simulation of 150 ms of electrical activity takes
approximately 15 minutes using 32 1 GHz Alpha processors.

FIG. 6. sColor onlined. Propagation of a point stimulus applied off-center in a quarter-annulus.sad–sdd Electrical excitationsoranged propagating into quiescent
tissuesblackd at timest=10, 20, 35, and 50 ms, respectively.sed Comparison of wave front contours at 10 ms intervals for the solution using the phase-field
method in Cartesian coordinatessred, symbolsd and the reference solution using polar coordinatessblack, solidd. Grid spacings areDx=Dr =0.025 cm and
Df=0.007 85 or 0.45°, withj=0.025 cm.
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A final example of a still more complex geometry is
shown in Fig. 9sdd. Here, the human atrial structure is used
in conjunction with the Nygren human atrial cell model.38 In
this geometry, computational nodes withf.10−4 occupy
14% of a 32033003230 box. A scroll wave rotating in the
thin wall of the left atrium appears as a spiral, which propa-
gates into the right atrium via interatrial connections. Com-
plicated patterns can result even from simple propagation
due to the presence of anatomical structures such as blood
vessels and valve annuli. With this structure, a simulation of
500 ms of electrical activity using the Nygrenet al. model
requires the use of distributed memory and takes approxi-
mately 2.5 hours using 64 1 GHz Alpha processors.

A significant advantage of using the phase-field method
is that for all of these different geometries, the only code
change required is the specification of a different file repre-
senting the phase field and the fibers of the desired anatomy.
Whereas finite-element models with irregular elements ne-
cessitate complicated grid generation procedures, only a
simple Cartesian grid structure is required, which then is
used to generate a phase-field interface. This makes the
phase-field method efficient, flexible, and practical for use
with a variety of complex cardiac geometries.

V. CONCLUSION

We have presented a new algorithm for implementing
no-flux boundary conditions in irregular domains, including
anatomical cardiac models. The phase-field method uses an
auxiliary field to distinguish between the interior and the
exterior of cardiac tissue. The no-flux boundary condition is
recovered formally in the limit where the width of the diffuse
interface between these two regions approaches zero. In
practice, this boundary condition is accurately modeled when
this width is small relative to the width of the activation
wavefront, which is the smallest length scale in the wave
propagation problem. Even though we have used simple fi-
nite differences to discretize the partial differential equations

FIG. 7. sColor onlined. Propagation of a point stimulus appliedsad to the
lower right corner of a quarter-annulus,sbd to the lower right corner of a
quarter-annulus with a hole, andscd near the right edge of an anisotropic
square domain with a hole. Wave front contours are shown at 10 ms inter-
vals for the solution using the phase-field methodsred, symbolsd and for the
reference solution using finite differencessblack, solidd. Reference solutions
are obtained using polar coordinates insad andsbd and using standard finite
differences inscd. Note that the contours are normal to all the boundaries for
both solutions insad and sbd. The ratio of diffusion constants parallel and
perpendicular to the fibers inscd is Dparallel/Dperpendicular=0.001/0.0002=5
and the fiber angle is −53°. Grid spacings areDx=Dr =0.025 cm andDf
=0.007 85 or 0.45° withj=0.025 cm forsad and sbd, while for scd the grid
spacing isDx=0.025 cm withDt=0.5 ms andj=0.025 cm.

FIG. 8. Maximum relative error in propagation velocity in the domain
shown in Fig. 7scd as a function of thej, the width of the phase field. For
values ofj below 0.03 cm, the error is less than 10%. The inclusion of
anisotropy increases the error by 2%–4% compared to an isotropic simula-
tion for nearly all values ofj tested.
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both in space and in time, the phase-field method, in prin-
ciple, is independent of the integration scheme.37 We have
provided a number of examples quantifying the method’s
accuracy using various nontrivial test geometries and dem-
onstrating its applicability to more complex anatomical mod-
els of the heart. Furthermore, we have shown the feasibility
of the method for several ionic models of differing levels of
physiological realism. These examples demonstrate that the
phase-field method is highly accurate in both isotropic and
anisotropic domains while retaining simplicity in concept
and ease of implementation. Systematic studies using various
anatomical geometries are currently under way.

We anticipate that this method will find increasing use to
describe cardiac geometries. The availability of new methods
for obtaining the necessary anatomical data such as diffusion
tensor MRI44,45 has made it easier and faster to obtain geo-
metrical descriptions of cardiac structures. The phase-field
algorithm offers a quick, practical method for simulating
electrical activity using new anatomical models with a
smoother representation of the complex boundaries than tra-
ditional stairstep approaches but without the need for the
complex and time-consuming task of grid generation for a
finite-element model with irregular grids. In addition, the
phase-field method does not require any changes when using
new geometries other than specifying the appropriate input
geometry file and surrounding box size; no changes need to

be made to the evolution equations or memory handling.
Although we have considered only the simplest situation

where the heart is electrically isolated, it should be possible
to extend the method to bidomain modelssfor a review see,
e.g., Ref. 46d with the heart embedded in a conducting me-
dium by exploiting the property that the phase field interpo-
lates smoothly between the electrical properties of different
regions.

Perhaps the most exciting future prospect for this
method is to couple electrical wave propagation and me-
chanical function. The phase-field method appears ideally
suited for this extension given its successful history of han-
dling complex moving boundary problems. Computational
constraints associated with finite-element techniques cur-
rently limit efforts to study such modelssfor a review see,
e.g., Ref. 47d. Given the ease of implementation and the
speed of our algorithm, we believe that the phase-field
method can provide an attractive and computationally fea-
sible alternative. As a result of the coupling of the cellular
calcium dynamics to the contraction of the myofibers, the
heart boundaries are no longer stationary and the phase field
becomes a dynamic variable. This extension should take into
account the force generation along with the appropriate pres-
sure conditions at the boundaries.

FIG. 9. sColord. Example simulations using the phase-field method in complex cardiac geometries.sad Single scroll wave in the rabbit ventricular model. The
left and right images show posterior and anterior views, respectively.sbd Slabs of the rabbit ventricles during scroll wave propagationsposterior viewd. The
slabs are perpendicular to the apex-base axis and proceed toward the apex.scd Propagation of an electrical wave in the canine ventricles 55 ms after a stimulus
along a simulated Purkinje network. The left image shows an anterior view of the ventricles with a small portion cut out to allow the endocardium to be seen.
The cut-out view on the right shows the anterior endocardium.sdd Two views of a spiral wave in the anatomical model of the human atria. The Nygrenet al.
model of human atrial cells is used. Electrical potential is color-coded with red corresponding to strongly depolarized tissue and blue corresponding to
repolarized tissue. In all cases, grid spacing is 0.025 cm, and the phase-field control parameterj is 0.025 cm. Time steps are 0.02 ms forsad andsbd, 0.05 ms
for scd, and 0.015 ms forsdd.
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APPENDIX A

As explained in the main text, the expression for the
voltage at gridpointi , j ,k at time stepn, Vnsi , j ,kd, can be
written as a weighted sum of the voltages at its 18 nearest
and next-nearest neighbors and the voltage at the gridpoint
itself. Using an explicit time-stepping algorithm with time
stepDt and grid spacingDx, the voltageVn+1si , j ,kd at time
stepn+1 can thus be expressed as

Vn+1si, j ,kd = Vnsi, j ,kd +
Dt

Dx2fFi,j ,ksi, j ,kdVnsi, j ,kd

+ Fi,j ,ksi + 1,j ,kdVnsi + 1,j ,kd + ¯

+ Fi,j ,ksi + 1,j + 1,kdVnsi + 1,j + 1,kd + ¯ g

sA1d

where we have, for simplicity, omitted the current term. The
dots in this expression represent terms obtained by changing
+1 into −1 and/or by permutation overi, j , andk. Thus, the
first set of dots represents five additional terms, while the
second set of dots represents eleven additional terms. The
weights F appearing in this expression can be written as
follows:

Fi,j ,ksi, j ,kd = − fD'sfi+1/2 + fi−1/2 + f j+1/2 + f j−1/2

+ fk+1/2 + fk−1/2d + Ddsfi+1/2sf i+1/2
x d2

+ f j+1/2sf j+1/2
y d2 + fk+1/2sfk+1/2

z d2

+ fi−1/2sf i−1/2
x d2 + f j−1/2sf j−1/2

y d2

+ fk−1/2sfk−1/2
z d2dg, sA2d

Fi,j ,ksi + 1,j ,kd = D'fi+1/2 +
Dd

4
s4fi+1/2sf i+1/2

x d2

+ f j+1/2f j+1/2
x f j+1/2

y + fk+1/2fk+1/2
x fk+1/2

z

− f j−1/2f j−1/2
x f j−1/2

y − fk−1/2fk−1/2
x fk−1/2

z d,

sA3d

Fi,j ,ksi + 1,j + 1,kd =
Dd

4
sfi+1/2f i+1/2

x f i+1/2
y

+ f j+1/2f j+1/2
x f j+1/2

y d sA4d

where Di and D' are the diffusion constants parallel and
perpendicular to the fiber, respectively, andDd=Di−D'.
Along with similar expressions for the other terms in Eqs.
sA2d–sA4d, we have used the following notation:

fi+1/2 = 1
2sfsi, j ,kd + fsi + 1,j ,kdd sA5d

and

f i+1/2
x = 1

2sfxsi, j ,kd + fxsi + 1,j ,kdd sA6d

where fxsi , j ,kd represents thex-component of the fiber vec-
tor f at grid positioni , j ,k.

APPENDIX B

To compute the elements of the conductivity tensor
given the fiber orientation at the Cartesian gridpoint we em-
ploy the same technique as Ref. 21. The fiber orientation at
each point is given by a unit vectorf. This defines a local
coordinate frame in which the conductivity tensor is diago-
nal:

D̃ = 1Di 0 0

0 D' 0

0 0 D'

2 . sB1d

Here,Di is the diffusion constant for propagation parallel to
the fiber andD' is the diffusion constant for propagation
perpendicular to the fibersstaken to be the same in both
perpendicular directionsd. In the Cartesian coordinate frame
of our heart this tensor is only diagonal if the fiber orienta-
tion is parallel to one of the axes. Thus, to find a represen-
tationD of the tensor in our coordinate frame we need to find
the transformation matricesA andAT such that

D = AD̃AT . sB2d

The matrix A can be obtained by writing out the in-
volved rotations explicitly. An alternative method uses the
fact thatf and the two vectors orthogonal to it,g andh, are
eigenvectors ofD with eigenvaluesDi andD'. Thus,A is an
orthogonal matrix of the formA =sf ,g,hd, and D can be
written, using Eq.sB2d, as

D = Diff T + D'sggT + hhTd. sB3d

Finally, making use of the fact thatAA T = I we find

D = D'I + sDi − D'dff T , sB4d

which shows that the conductivity matrix can be expressed in
terms of only the fiber orientation vectorf.
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