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We present a novel algorithm for modeling electrical wave propagation in anatomical models of the
heart. The algorithm uses a phase-field approach that represents the boundaries between the heart
muscle and the surrounding medium as a spatially diffuse interface of finite thickness. The chief
advantage of this method is to automatically handle the boundary conditions of the voltage in
complex geometries without the need to track the location of these boundaries explicitly. The
algorithm is shown to converge accurately in nontrivial test geometries with ndzZ&m normal

curren) boundary conditions as the width of the diffuse interface becomes small compared to the
width of the cardiac action potential wavefront. Moreover, the method is illustrated for anatomically
realistic models of isolated rabbit and canine ventricles as well as human at#@0®American

Institute of Physics[DOI: 10.1063/1.1840311

The mechanisms for the generation and maintenance of computational studies of reentrant arrhythmias have been
cardiac arrhythmias, the leading cause of death in the performed in simplified domains to focus on understanding
industrialized world, are poorly understood. Computer  reentry as a function of electrophysiological parameters us-
modeling can furnish valuable information, provided that ing various existing models of cardiac cell membrane

th_e models used are sufficiently realistic. .Modeling ellec- dynamics?'g Nevertheless, it is being increasingly recog-

trlcal' wave propagation in models O.f c.ard|ac geometries ;e that understanding the evolution of cardiac arrhythmias
rehqw_rels notlonly ant_accu:ca:re] dﬁscr|tptk|)ort1 olf the e'eCtTO' requires analyzing the role of anatomy as well. For example,
physiological properties of the heart but also a precise numerical studies have shown that the anisotropic fiber rota-

implementation of the geometrical structure and fiber ) ) . .

orientation within the tissue. This paper addresses these 10N o§1‘0the ventricles can alter the g%elgta'tlo.n of reentrant
geometrical requirements and presents a new algorithm Waves: and can even destabilize them.” Similarly, peri-

to model wave propagation in anatomical models of the ~Odic boundary conditiorisand surface curvatutécan com-
heart. The algorithm is based on the diffuse interface plicate reentry in some cases.

phase-field approach that has been used in a wide range Numerical modeling of reentrant arrhythmias using real-
of contexts. Simulation results are presented that quan- istic three-dimensional cardiac geometries and ionic cell
tify the accuracy of the method and illustrate its applica-  models has become increasingly feasible due to rapid ad-

tion to realistic heart geometries ranging from rabbitand  vances in computer power. The earliest simulations of elec-

canine ventricles to the human atria. trical activity in realistic heart structures in the 1960s com-
bined cellular automata using varying degrees of coarseness
I. INTRODUCTION with structures extrapolated from published cross sections of

Despite intense research over the past decades, the pignine heart4216 elements” and, Iateg, digitized from a
cise mechanisms for the onset and maintenance of fibrillatioRUman heart27 000 3 mm cubic blocks® Increasing levels
remain poorly understood. Reentrant excitations, which ocof complexity have been added to simulations using realistic
cur when the propagation of the electric wave is blocked ircardiac anatomy with the incorporation of anisotropyhe
some direction$? causing the wave front to curl and reenter replacement of cellular automata with ionic cell modéls,
previously excited tissue, are thought to play an importangind the use of data sets with fiber orientations obtained from
role in many case$> Computer models are important tools high-resolution  dissections of canffle and rabbit’
in the analysis of arrhythmia mechanisms because, unlikgentricles'*?*?*Harrild and Henriquez have also developed
most experiments, simulations can easily provide informaand used a realistic structural and electrophysiological model
tion on both surface and interior activity. However, mostof human atrig’
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The use of anatomical models of the heart requires the N o
accurate solution of boundary conditions on the voltage in CmE =V g V'V =lion, (1
complex shapes, e.g., a no-fl(zero normal currentbound-
ary condition in the simplest case where the heart is isolatedvhere Cr, (uF cni?) is the membrane capacitande,is the
In finite-difference algorithms, this major difficulty has been gradient operatot,q, (wA cm™) is the total membrane ionic
overcome so far by defining additional external grid points.current,o is the conductivity tensor, an§, is the surface to
The values of these ghost points are then determined in théolume ratio. It is also convenient to define the anisotropic
most convenient manné&t? An undesirable feature of this diffusion tensoD=0/(S,Cy,), whosed x d elementswhere
approach, however, is that it is possible for the same ghodt is the dimension of spagelepend on the local fiber orien-
cell to have different values depending on which neighboringation that generally varies in space in the heart.
cell is being updated. Note, however, that it is possible to ~ For an isolated tissue, there is zero current flow normal
implement a finite-difference scheme with only interior grid to the tissue boundaries:
oints using a recently introduced immersed interface
Enethod Wi?h fiber ar)llisotropy in tf® and three n-DVV=0, @
dimension€® Another commonly used technique, finite- wheren is the unit vector normal to the heart surface. Note
element methods, is able to handle nonflux boundary condthat this boundary condition only reduces to the standard
tions naturally:*?*?"However, these methods are generallyNeumann boundary condition-VV=0 when diffusion is
slower than finite differences for equivalent grid spacingsisotropic. The term “no-flux” is often associated with this
and are more cumbersome to implement. Neumann boundary condition. It is used here, however, to
The purpose of this paper is to present a new algorithnrefer to the more general boundary condition of E2).with
that accurately implements no-flux boundary conditions inthe interpretation that it corresponds to no current flux nor-
arbitrary geometries, and which can, therefore, be used tmal to the boundary. To date, most numerical studies of car-
model wave propagation in realistic models of cardiacdiac wave propagation have focused on simplified geom-
anatomy. Our algorithm is based on the phase-field approacitries including two-dimensional sheets and three-
that has been applied successfully to a wide variety of probeimensional slabs of tissusee., e.g., Refs. 63:9For these
lems including dendritic solidificatioff viscous ﬁngerin@;,9 simplified geometries, it is straightforward to implement no-
crack propagatioﬁ(,"31 the tumbling of vesicle and intra-  flux boundary conditions, even when including tissue aniso-
cellular dynamic$® This method has the chief advantage tropy. For example, in a slab of tissue, anisotropy can be
that it avoids the need to track the interface explicitly byincorporated easily when the tissue fibers are parallel to faces
introducing an auxiliary field that makes the interface spaof the slab'>*?*In contrast, hearts have much more com-
tially diffuse. This procedure introduces a new length scaleplicated geometries that include curved boundaries and com-
the interface width. Therefore, results are fully convergedplicated fiber orientation®.
only if they are independent of this width for sufficiently thin To treat irregular geometries using the phase-field meth-
interfaces. This paper will demonstrate that it is computa-odology, we introduce an auxiliary field that takes on dif-
tionally feasible to achieve this convergence using a simpléerent values inside and outside cardiac tissue and varies
finite-difference discretization of the continuous propagatiorsmoothly across a thin diffusive interface connecting these
models. Here, we use this approach to model only fixed getwo regions. Here, we choose for simplici##=1 in the in-
ometries with stationary boundaries but, in principle, it canterior of the heart an@=0 in the exterior of the heart.
be extended to model moving boundaries. This extension As has been shown in various applications of the phase-
appears very promising to model the full electromechanicallyfield method?®* the precise form of the phase-field profile
contracting heart by coupling the dynamics of the phase fieléh the thin interface region is not critical to the algorithm. In
to the displacement field in order to include the effect ofthis paper, we have chosen to calculate the phase field via a
contractile forces, as well as to model blood flow in therelaxation method. For this, the heart is placed in a compu-
exterior domain. tational box that can accommodate its size. In the interior
The paper is organized as follows. In Sec. Il we intro-and the exterior of the hear is initially set to 1 and 0,
duce the phase-field method and discuss the equations gosespectively. The smooth values @f which are to be used
erning the electrical activity. In Sec. lll we quantify the ac- later in wave propagation simulations, are then determined
curacy of our method through the investigation of electricalby solving the equation
wave propagation in nontrivial geometries. In Sec. IV we
present results of simulations using models of rabbit ven- 99 = £2V2¢ - M (3)
tricles, canine ventricles and human atria. Finally, Sec. V ot op

contains our conclusions and a discussion of some fuwrﬁ/hereg is a parameter that controls the width of the interface
extensions. and the functiorG(¢) has the form of a double-well poten-
tial with minima at$=0 and#=1. Therefore, it attempts to
maintain ¢ at the values 1 and O in the interior and exterior
Il. METHODS regions, respectively, whereas the diffusion operator tends to
smooth out the spatial discontinuity @f at the boundary
The dynamics of the transmembrane potenfiamV) is between these two regions. The balance between these two
given by the standard continuous cable equa?f‘on: terms creates a spatially diffuse interface with a width that
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FIG. 1. (Color onling. (a) Example of the phase fielg¢ along a one-dimensional section from the slice of rabbit ventricles show).imThe solid line
indicates the original values of 1 or 0 assignedptand the open circles represent the final steady-state valugsafier solving Eq(3) using é=0.05 cm.

(c) Different solutions for¢ using £=0.075, 0.05, and 0.025 cm corresponding to diamonds, circles and stars, respectively. Note that for the Ghaice of
Eqg. (3), ¢ matches(1+tanh(2.3625x)/£))/2, as shown by the long dashed curve when ugjr@®.05 cm and the short dashed curve when using
=0.075 cm. The width of the interface is approximately 4

depends on the control paramegefor the standard form of substitutionsC,,,— ¢C,, lion— @lion, @ando— ¢o in Eq. (1),

a double-well potential, respectively. After dividing both sides b9, this equation
can then be rewritten in the following form:

_(2¢-17 (2¢-1*

G(¢) = : (4) N I
’ 4 8 b=V -[D¢VV]-¢§- (6)
the one-dimensional solution @ across the interface in an ) ) " _
infinite domain is given by To show that this extension can correctly incorporate the
boundary conditions, we consider for simplicity a one-
#(x) =3 + 1 tanh((a- x)/¢), (5)  dimensional domain with a boundaryata as illustrated in

Fig. 1(c). Integrating Eq(6) over the boundary yields

art N Iion
- . dX‘ﬁ{E*c—m] "

which corresponds to an interface centeredxat [i.e.,
where ¢(a)=1/2]. Note that Eq.(3) can be written in the D N
variational formde/ dt=-56F1 5¢, whereF is the Lyapunov X
functional 7= [d\V[£2|V ¢|?/2+G(¢)]; [dV denotes the spa-
tial integral over the whole computational volume. As long Since ¢(a-¢§)~1 and ¢(a+¢§)=~0. If we neglect the spatial
as there are no fluxes across boundaries at infinity, th¥ariation of the right-hand side of E€7), we find
Lyapunov functional decreases monotonically with time N
(dF/dt=<0). -
In practice, our domains have finite extent, and iterating
Eq. (3) with initial values of¢ as described above can lead to where the prefactoF is discussed below. Thus, in the so-
the filling of anatomical voids: subdomains where the initialcalled sharp interface limig— 0, the no-flux boundary con-
condition is »=0 can be replaced by=1. Thus, we inte- dition is recovered. In addition, E6) reduces to Eql) in
grate Eqg.(3) until a reasonably smooth interface has beerthe interior of the heart wheré=1.
created. Typically, we used a time stepAt=0.01 ms and a Note that the elements of the diffusion tensor, or equiva-
spatial discretization oAx=0.025 cm. An example of this lently the three component$*, Y, %) of the fiber orientation
integration performed on an arbitrary line across a slice of &rom which these elements can be calculated, are only
rabbit ventricular structuf@ using £=0.05 cm is shown in  known in an anatomical heart model at the points in the
Fig. 1. The width of the diffusive interface is approximately interior and on the surface of the tissue wherel origi-
4¢, as can be seen in Fig(d, which shows the phase field nally, before¢ is relaxed using Eq(3), as shown for repre-
for three different values of. As explained below, the value sentative slices in Figs.(& and 2b). To solve Eq(6), how-
of & controls the error in the algorithm. ever, these elements must be obtained for points inside the
The calculated stationary profile gfis used to interpo- diffuse interface region that lie in the exterior region where
late smoothly between the electrical properties of the interiokp was originally zero and where no fiber information exists.
and exterior regions. Because the membrane capacitance, thiber orientations at these points are obtained in an iterative
membrane current, and the conductivity vanish in the extemanner. In each iteration, fiber information is determined for
rior domain, the simplest interpolation consists of making theall points which have at least one neighbor with fiber orien-

x=a—¢

~F¢, (8

X X=a
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FIG. 2. (Color online. Fiber orientation information for the anatomical model of rabbit ventricles of Refia2@nd(b) Slices 2 cm(a) and 1.5 cm(b) from

the apex showing the projections of the three-dimensional fibers ir-thigolane.(c) The three components of the fiber orientation vectors along the line in

(b) for points inside the original domaiwhite area, length between 0.57 and 0.9) @nd points in the enlarged domaigray areaswhose fiber values
originally were undefined. Continuity is present in all components. See text for details of the iterative process used to determine values sbyr previou
undefined fiber orientations.

tation values and whose fiber orientations are not yet definedomputation box, ensures thf#$V dx is conserved. For the
by averaging the values of each fiber direction compoftent full three-dimensional3D) simulations, this procedure in-
¥, and f* for all neighbors with defined values and normal- cludes the other two directions, taking into account the cross-
izing the resultant vector. The iterative process is continuederivatives to incorporate the anisotropic nature of the tissue.
until all points in the enlarged domain have fiber informa-This results in an expression for the time derivativevofk
tion. Figure 2c) shows the three components of both thethat is a weighted average of its 6 nearest neighbors, its 12
originally defined(white area and the iteratively obtained next-nearest neighbors and itself. Explicit expressions for
(gray areafiber orientation vectors and demonstrates contithese weights are given in Appendix A. Because the fiber
nuity in fiber direction. orientation changes from point to point, these weights must
It is important to note that our algorithm is independentbe calculated for each point in the tissue, but these weighting
of the discretization and integration method used to solve Eqvalues can be computed once and stored in memory using 19
(6) numerically‘?’7 In this paper, we use a finite-difference three-dimensional matrices.
scheme with a uniform spacinggx. The time integration is Because the values of the phase field away from the
carried out with an explicit Euler method. For clarity of ex- heart surface approach zero exponentially on a sedlet is
position, we describe the algorithm in one dimension anchot necessary to solve E(f) over the whole computational
reserve the details of the implementation in higher dimendomain. In practice, no calculations are performed below a
sions for Appendix A. The governing equation can be writtencut-off value for¢ close to zero, which results in a substan-
without the local ionic current terms ag(dV/dt)=4J/dx,  tial computational saving. We have verified that no signifi-
whereJ=D ¢(dV/dx) is a flux. We calculate the derivative of cant alterations in the solution or wave propagation speed
this flux on a mesh with nodes that are on the midpoints obccur for cut-off values ofp=1x 104 or smaller when us-
the lines connecting the gridpoints. Thus, for gridpainthe  ing £=0.025 cm(the cut-off value should be decreasedéas
derivative of the flux is written as is reduced For our typical choices of, Ax, and the value of
aj gz gu2 the cutoff an average of roughly three to four relevant grid-
=== - (9)  points are added to the actual domain in the direction normal
X Ax to the surface.
For the descriptions of the ionic currerifs, in Eq.(1), a
_ _ wide range of models with varying degrees of detail and
}((D¢)‘ N (D¢)i+1)vl+1_ V' (10) complexity can be used. To show that the phase-field method
2 can be used for a variety of models, we use here two recent

Ax
ionic models, the Nygrert al. human atrial modé&f and the
where we have taken the average of the prodgtas the oy et al. canine ventricular modéf. shown in Figs. &)
value at the midpoint. Combined with a similar expression,,q 3b), respectively. In addition, we use a four-variable

_1/2 . - - .
for J=*4 a finite-difference scheme can be obtained and exphenomenological model with intermediate défaivhose

In this expression]'*'/2 can be written as

pressed as parameters can be varied to reproduce the action potential
dV . _ o ) and rate adaptations obtained in experiments and in detailed
¢IE =F(i-DVT+F OV +F(i + DV, (1) ionic models*®*In this paper, parameters are set to repro-

duce action potentials similar to experimental recordings of
where the prefactor6™(n) are functions of the phase field canine epicardial cellssee Fig. &)] while producing a dif-
and the diffusion tensor using terms at pomto calculate ferent maximum upstroke velocity than the Fetxal. model
values for pointm. This discretization scheme, together with [see Fig. 8a)], thereby allowing analysis of the effect of
the fact that the phase field approaches 0 at the edges of tlhpstroke steepness on the accuracy of the phase-field method
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FIG. 3. Representative action poten-
tials as measured in uniform cables
from (a) the Nygrenet al. human atrial
model (Ref. 38, (b) the Foxet al. ca-
nine ventricular mode(Ref. 39, and
(c) the phenomenological ionic model
in Ref. 12 with parameters to repro-
duce canine epicardial cells. Note that
the Foxet al. model has a faster up-
stroke than the phenomenological
model(values ofdV/dt,,,, are 270 and
161 V/s, respectively (d) The up-
strokes corresponding to the models
shown in(a) (long dasheks (b) (solid),
and(c) (dashes Models with different
values ofdV/dt,,, are used to show
its effect on the accuracy of the solu-
P S R T P I S ‘ . tions obtained using the phase-field
100 200 300 O 100 200 0 100 200 300 36 37 38 39 method(see Fig. 5.
Time (ms)

20

o

o

using a variety of models. The upstrokes of the three modela range of times during the depolarizati@h and repolariza-
are shown in Fig. @), and the values oflV/dt,,, are 106, tion (b). For comparison, the simulation results using a stan-
270, and 161 V/s for the Nygreet al, Fox et al, and phe- dard second-order-accurate finite-difference implementation
nomenological canine epicardial models, respectively. Notef the boundary conditions are plotted as a solid line. Figure
that the maximum upstroke velocity is higher at any physicali(c) shows the action potential at the right boundary using
boundary with a no-flux boundary condition. In this case, thefinite differencegsolid) and the phase-field methddotted.
values of dV/dt,,, at the boundary are 193, 368, and The error in the maximum upstroke velocity/dt,,,, using
237 V/s for the Nygreret al, Fox et al, and phenomeno- the phase-field method is about 2%, as shown in Fia). 5

logical canine epicardial models, respectively. Figure 5 quantifies the accuracy of the cable solution of
the three models as a function of the control paramétey
I1l. APPLICATION TO SAMPLE GEOMETRIES measuring the relative error in the maximum upstroke veloc-

ity (a), the cumulative error in the action potentia)), and
the relative error in action potential duratidic) at the
To illustrate the phase-field method and quantify its ac-boundary, where the errors are largest. As expected, the

curacy, we first apply it to a one-dimensional cable withmaximum errors decrease &snd, consequently, the width
zero-flux boundary conditions imposed by the phase field. A0f the phase field decrease. For the valué ehown in Fig.

5 cm long cable was embedded in a longer cable of lengti(a), 0.015 cm, the relative error in the maximum upstroke
6 cm and the middle of the domain was briefly excited tovelocity is less than 5% for all three models, and it is less
initiate two waves propagating toward the two ends of thethan 10% for£=0.025 cm. The other two error quantities
cable. Figure 4 shows the resulting membrane potevittat  indicate deviations from the finite-difference action potential

A. One-dimensional cable

(@ o ©

s
E
s 0
o
2
>° -60
80 | T
%5 % w5 % ®s
-
: -100 L L L L L
0 1 2 3 5 1 2 3 4 5 0 100 200 300 400 500
L (cm) L (cm) Time (ms)

FIG. 4. Membrane potential distribution along a 5 cm-long cable at different times using the phase-field methag=v@it25 cm,At=0.05 ms, andt

=0.015 cm(symbolg and using a standard zero-flux finite-difference code with the same discretization. The initial condition is a brief excitation at the center
of the cable at=0. This produces a symmetric excitation that propagates to the gdy&bltage distribution during depolarizatiqall voltage values are

>-10 mV). Initial time ist=40 ms, final time i¢=58 ms, and the voltage distribution is plotted every 3 hsVoltage distribution during repolarizatiqall

voltage values are<0 mV). Initial time is t=110 ms, final time i$=275 ms, and the voltage profile is plotted every 15 fag.Comparison of action
potentials at the boundary using finite differen¢sslid) and the phase-field methddotted, with the two upstrokes highlighted in the inset. The phenom-
enological model is used.
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40

hand side of Eq(7) is large and the prefactdt in Eq. (8) is
maximal. However, since this only occurs during a very
small time interval, the error in quantities measured over the
entire action potential are much smaller. We note that the
error becomes large when the width of the interface becomes
small relative to the the spatial resolutidix (see Fig. 4.

w
o
T

N
o
T

1/, —--- Fox et al.model

. - :“{gl:f]';fl”’-“‘“de‘ B. Two-dimensional irregular tissue geometries

% Error in (dv/dt)

In two dimensions, it is useful to test the accuracy of the
method for nontrivial geometries that can be solved using
both a standard finite-difference code with the no-flux
boundary condition applied at a sharp boundary and the
phase-field method discretized with finite differences on a
two-dimensional lattice. For isotropic tissue, an annular ge-
ometry with no-flux boundary conditions can be solved eas-
(®) ily using finite differences after transforming Eq) to polar

——-- Fox et al. model p

——— Nygren et al. model coordinates as follows:
15 + —— 4V model Pis 4

-
o
T
L

0 01 0.2 0.3
Control parameter & (cm)

N 19 N 1HAV| |,
- = ——p—+—2&2— - . (12)
ot pdp dp p~dpl Cpy
Figure 6 shows propagation in a quarter-annulus with an
outer radius of 5 cm and an inner radius of 1.5 cm. The
phase-field algorithm is implemented on a 20R00 square
grid with a grid spacing ofAx=0.025 cm. The tissue was
briefly stimulated in the middle of the tissue and snapshots of
‘ ‘ ‘ ‘ ‘ the color-coded membrane potential are shown. A compari-
o 005 o1 015 02 025 03 son of phase-field and finite-difference simulations in polar
Control parameter & (cm) . . . .
coordinates is shown in Fig. (&, where the contour
V=-60 mV of the wave front is plotted at different times for
(0 the phase fieldsymbolg and for the finite-difference algo-
s Foxeral nioicl rithm (solid lineg. The same geometry is shown in Figag
- Eagrel:‘eltai.model but in this case the excitation was initiated from the lower
ir o 1 right corner. Agreement between wave front velocity in the
P two methods is very good in both cases, with less than 1%
rd L difference using the phase-field algorithm. The precise dif-
ference in the two methods depends slightly on the location
within the tissue due to the fact that the polar coordinate
discretization leads to a nonuniform grid spacing relative to a
Cartesian grid because the grid spacing on the inner radius of
the annulus is smaller than the grid spacing on the outer
% 005 01 015 02 025 03 radius. _ _
Control parameter & (cm) To make the geometry more complex in Cartesian coor-
FIG. 5. (a) Relative error in the maximum upstroke veloditiv/dt).,asa  dinates, a quarter-annulus with an irregular-shaped hole can
function of the phase field width for one-dimensional cable simulations as ; ; [P
shown in Fig. 4 for the Fot al. (short dashesNygrenet al. (long dashes be used, as shown !n FIg(b?}_. Note that despite '.t§ complex .
and phenomenologicdkolid models. Note that for the values @fused shape, the l?ounda”es of this hole can be specmed e_XaCtIy n
throughout this paper, the relative error is less than 1@%Cumulative ~ polar coordinates. As before, the wave front velocity ob-
error in action potential for the same cases. The cumulative error is obtaineghined using the phase-field algorithm matches that obtained
by computing the absolute error in voltage over the time course of °”eusing the polar finite-difference algorithm within 1%. Fur-
action potential and then computing the ratio of the area under that curve t% e L. . '
the area under the curve of the action potential calculated with the finitdn€rmore, we have Ve“.f'ed that an activation in the ph?-se'
difference code(c) Relative error in action potential duration for the same field interface cannot stimulate the computational domain.
cases. In all caseax=0.025 cm and\t=0.05 ms. Slight increases in error Because cardiac tissue is highly anisotropic, with propa-
can be observed for the smallest values¢dfecause for these values the . . . -
interface is very steep and is not adequately resolved by the fixagsed. gation bemg two tp _th_ree times faster aI.ong muscle fibers
than across them, it is important to establish the accuracy of
the phase-field method for domains with anisotropic conduc-
shape, and both errors rise steadilyéas increased but are tion. Figure Tc) shows a square containing a hole with fibers
significantly smaller than the error in maximum upstroke ve-at an angle of —53° relative to the vertical axis, a domain in
locity. This is logical when one considers Eq%) and (8):  which no-flux conditions can be implemented for all bound-
During the upstroke phase of the action potential, the rightaries using finite differences. Excellent agreement is obtained

% Cumulative Error in AP

% Error in APD
\
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FIG. 6. (Color onling. Propagation of a point stimulus applied off-center in a quarter-anni@usd) Electrical excitatior(orange propagating into quiescent
tissue(black at timest=10, 20, 35, and 50 ms, respectivelg) Comparison of wave front contours at 10 ms intervals for the solution using the phase-field
method in Cartesian coordinaté®d, symbols and the reference solution using polar coordindbdack, solid. Grid spacings ardx=Ar=0.025 cm and
A¢$=0.007 85 or 0.45°, witit=0.025 cm.

between the phase-field and reference solutions for values ofecessary to determine fiber orientation values at these
£<<0.03 cm, as can be seen in Fig. 8. The relative error in th@oints as explained in Sec. Il. Other details of the fiber
wave front velocity is below 10% over this range &€f implementation are given in Appendix B.

To summarize, in one- and two-dimensional regular and  Figure 9a) shows complex behavior resulting from a
irregular domains with and without fiber anisotropy, thescroll wave in the rabbit ventricular geometry using the
phase-field method yields accurate results for both the maxiFenton—Karma three-variable motfelvith parameters ad-

mum upstroke velocity and the propagation speed. justed to reproduce the electrophysiological effects of the
electromechanical uncoupling agent cytochalasin-D in

IV. APPLICATION TO ANATOMICAL MODELS IN rabbit*? The computational nodes wit#> 107 fill 30% of

THREE DIMENSIONS a 138x 130X 152 box, and an anisotropy ratio of 5:1 is used

Having demonstrated the convergence of the phase fieltPparatief Dperpendicuiar 0.-001/0.0002 Figure 9b) shows a
method in one- and two-dimensional domains, we now illus-Series of eight slabs for the same simulation 200 ms later to
trate its app”cation to more Comp|ex anatomical structures irﬂllustrate the irregular electrical aCtiVity in the interior. The
three dimensions. Two of the data sets used here have be&froll wave can be seen propagating around both ventricles
obtained by manually subdividing ventricles of animalsand across the septum. One second of simulation time takes
(caniné® and rabbit%) into thin slices, recording the fiber approximately 1.5hours on a single 667 GHz Alpha
orientation and geometry throughout the slices, and recorProcessor.
structing the original anatomy into a finite element model in ~ Figure 9c) shows simple propagation in the larger ca-
prolate spheroidal coordinates following a computationainine ventricular model, where computational nodes wjth
procedure developed by Nielsehal® We also use a model >10"* occupy 26% of a 408 320X 320 box. In this case,
of human atria that was originally digitized and recon-we have incorporated a simple Purkinje network to ensure a
structed using finite elemert For the simulations included realistic activation sequence, similar to that detailed by Dur-
here using the phase-field method, the finite-element modelsgr et al®® In addition, the phenomenological model used
including fiber orientation data for the two ventricular mod- includes three variations to represent endocardial, epicardial,
els, were interpolated and mapped onto a regular Cartesisaand midmyocardial ventricular cells, which are distributed
grid with a grid spacing of 0.025 cm. The structure was therthroughout the ventricular walf The midmyocardial cells
embedded in a computational box slightly larger than thecan be observed in the interior of the wall where higher
structure, and the phase field was computed following Eqgvoltages, related to prolonged action potentials, are present.
(3) usingé=0.025 cm. Note that because the phase field creA typical simulation of 150 ms of electrical activity takes
ates additional computational points near the surface, it ispproximately 15 minutes using 32 1 GHz Alpha processors.
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FIG. 8. Maximum relative error in propagation velocity in the domain
shown in Fig. Tc) as a function of the, the width of the phase field. For
values of¢ below 0.03 cm, the error is less than 10%. The inclusion of
anisotropy increases the error by 2%-4% compared to an isotropic simula-
tion for nearly all values of tested.

A final example of a still more complex geometry is
shown in Fig. @d). Here, the human atrial structure is used
in conjunction with the Nygren human atrial cell mod@ln
this geometry, computational nodes with>10"* occupy
14% of a 320< 300 230 box. A scroll wave rotating in the
thin wall of the left atrium appears as a spiral, which propa-
gates into the right atrium via interatrial connections. Com-
plicated patterns can result even from simple propagation
due to the presence of anatomical structures such as blood

' \ vessels and valve annuli. With this structure, a simulation of
\ 500 ms of electrical activity using the Nygre al. model
. requires the use of distributed memory and takes approxi-
mately 2.5 hours using 64 1 GHz Alpha processors.

\ A significant advantage of using the phase-field method
is that for all of these different geometries, the only code
change required is the specification of a different file repre-
senting the phase field and the fibers of the desired anatomy.
Whereas finite-element models with irregular elements ne-
cessitate complicated grid generation procedures, only a
simple Cartesian grid structure is required, which then is
used to generate a phase-field interface. This makes the
phase-field method efficient, flexible, and practical for use
100.0 150.0 with a variety of complex cardiac geometries.

150.0

100.0

V. CONCLUSION

We have presented a new algorithm for implementing

_ _ o _ no-flux boundary conditions in irregular domains, including
FIG. 7. (Color onling. Propagation of a point stimulus appli¢a) to the . p .
lower right corner of a quarter-annulug) to the lower right corner of a ana_tc.)m'call cardlac_ mOde_Is' The phase-flelq m(:j'thOd uses an
quarter-annulus with a hole, arid) near the right edge of an anisotropic auxiliary field to distinguish between the interior and the
square domain with a hole. Wave front contours are shown at 10 ms interexterior of cardiac tissue. The no-flux boundary condition is
vals for the solution using the phase-field metfiatl, symbolsand for the — yacoyered formally in the limit where the width of the diffuse
reference solution using finite differencésack, solid. Reference solutions . .
are obtained using polar coordinates@ and(b) and using standard finite interface between these two regions approaches zero. In
differences in(c). Note that the contours are normal to all the boundaries forpractice, this boundary condition is accurately modeled when
both solutions in(@) and (b). The ratio of diffusion constants parallel and this width is small relative to the width of the activation

perpendicular to the fibers i(t) is Dparaiiel Dperpendiculsr 0-001/0.0002=5 ; ; ;
and the fiber angle is ~53°. Grid Spacings Aree AT =0.025 cm andbd wavefront, which is the smallest length scale in the wave

=0.007 85 or 0.45° wit=0.025 cm for(@) and (b), while for (c) the grid ~ Propagation problem. Even though we have used simple fi-
spacing isAx=0.025 cm withAt=0.5 ms andt=0.025 cm. nite differences to discretize the partial differential equations
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FIG. 9. (Color). Example simulations using the phase-field method in complex cardiac geom@rigmgle scroll wave in the rabbit ventricular model. The

left and right images show posterior and anterior views, respectii®llabs of the rabbit ventricles during scroll wave propagatfmssterior view. The

slabs are perpendicular to the apex-base axis and proceed toward thécaPespagation of an electrical wave in the canine ventricles 55 ms after a stimulus
along a simulated Purkinje network. The left image shows an anterior view of the ventricles with a small portion cut out to allow the endocarditen.to be se
The cut-out view on the right shows the anterior endocardiahiTwo views of a spiral wave in the anatomical model of the human atria. The Nygrain

model of human atrial cells is used. Electrical potential is color-coded with red corresponding to strongly depolarized tissue and blue ecgrespondi
repolarized tissue. In all cases, grid spacing is 0.025 cm, and the phase-field control pagas@t@25 cm. Time steps are 0.02 ms ¢ar and(b), 0.05 ms

for (c), and 0.015 ms fotd).

both in space and in time, the phase-field method, in prinbe made to the evolution equations or memory handling.
ciple, is independent of the integration scheth#ve have Although we have considered only the simplest situation
provided a number of examples quantifying the method'syhere the heart is electrically isolated, it should be possible

accuracy using various nontrivial test geometries and demyy extend the method to bidomain modéisr a review see
onstrating its applicability to more complex anatomical mod-, g., Ref. 4 with the heart embedded in a conducting me-

els of the heart. Furthermore, we have shown the feasibility,, = - by exploiting the property that the phase field interpo-

of the method for several ionic models of differing levels OfI tes smoothly between the electrical properties of different
physiological realism. These examples demonstrate that the i y prop

phase-field method is highly accurate in both isotropic and®9'onS:
anisotropic domains while retaining simplicity in concept ~ Perhaps the most exciting future prospect for this
and ease of implementation. Systematic studies using variouBethod is to couple electrical wave propagation and me-
anatomical geometries are currently under way. chanical function. The phase-field method appears ideally
We anticipate that this method will find increasing use tosuited for this extension given its successful history of han-
describe cardiac geometries. The availability of new methodsgling complex moving boundary problems. Computational
for obtaining the necessary anatomical data such as diffusiogonstraints associated with finite-element techniques cur-
tensor MRf***has made it easier and faster to obtain geoyently limit efforts to study such modeléor a review see,
metn_cal descriptions gf card|ag structures. The phase—.flelg_g” Ref. 47. Given the ease of implementation and the
algorithm offers a quick, practical method for simulating speed of our algorithm, we believe that the phase-field

electrical activity using new anatomical models with a X . .
. . method can provide an attractive and computationally fea-
smoother representation of the complex boundaries than tra-

ditional stairstep approaches but without the need for théible_ alternative_. As a result of th? coupling of th? cellular
complex and time-consuming task of grid generation for gcalcium dynamics to the contraction of the myofibers, the
finite-element model with irregular grids. In addition, the heart boundaries are no longer stationary and the phase field
phase-field method does not require any changes when usi,la&comes a dynamic variable. This extension should take into
new geometries other than specifying the appropriate inpuaccount the force generation along with the appropriate pres-
geometry file and surrounding box size; no changes need teure conditions at the boundaries.
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given the fiber orientation at the Cartesian gridpoint we em-
ploy the same technique as Ref. 21. The fiber orientation at
each point is given by a unit vectdér This defines a local

As explained in the main text, the expression for thecoordinate frame in which the conductivity tensor is diago-
voltage at gridpoini,j,k at time stepn, V'(i,j,k), can be nal:
written as a weighted sum of the voltages at its 18 nearest DL 0 0

. A I

and next-nearest neighbors and the voltage at the gridpoint ~
itself. Using an explicit time-stepping algorithm with time D={ 0 D, 0 [ (B1)
stepAt and grid spacing\x, the voltageV™(i,j,k) at time 0 0 D,
stepn+1 can thus be expressed as

APPENDIX A

Here,D, is the diffusion constant for propagation parallel to
D At . the fiber andD, is the diffusion constant for propagation
VILj k) =V (I,J,k)+E[F PELTOVIGL LK) perpendicular to the fiber@iaken to be the same in both
N perpendicular directionsin the Cartesian coordinate frame
+FIKG+ L]V + 1,k + - of our heart this tensor is only diagonal if the fiber orienta-
+FFIKG 1+ LRV + 1)+ 1K)+ -] tion is parallel to one of the axes. Thus, to find a represen-
tationD of the tensor in our coordinate frame we need to find
(A1) the transformation matrices andAT such that
where we have, for simplicity, omitted the current term. The
dots in this expression represent terms obtained by changing
+1 into —1 and/or by permutation overj, andk. Thus, the The matrix A can be obtained by writing out the in-
first set of dots represents five additional terms, while thesolved rotations explicitly. An alternative method uses the
second set of dots represents eleven additional terms. Thact thatf and the two vectors orthogonal to §,andh, are
weights F appearing in this expression can be written aseigenvectors ob with eigenvalue®, andD . Thus,A is an
follows: orthogonal matrix of the formA=(f,g,h), and D can be

G written, using Eq(B2), as
FUKILj,K) = = [D (Bt dioro* dpae*t b1 Tg Q(( )T y ©3)
D=Dff' +D +hh'). B3
+ a2t 12 + Dol biena 1) ! 1199
+ ¢j+1/2(f,y+1/2)2 + drra fern)?

+ di_12(Fi10)® + By £1/0)°
. oy A2 which shows that the conductivity matrix can be expressed in
AR (A2) " terms of only the fiber orientation vectér

D=ADAT. (B2)

Finally, making use of the fact th&A =1 we find
D=D,| +(D,—-D )ffT, (B4)

Fi,j,k i+1iK=D.d + % Ad> £ 2 IA. T. Winfree, When Time Breaks Down: The Three-dimensional Dynam-
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sity Press, Princeton, NJ, 1987
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- g{)j_l,zf}‘_l,zf}’_l,z— Dr-1/ofk-1ofk-1/2) s ggg(;rzgg;(‘entry in normal canine myocardium,” J. Clin. Inve3t1039-

(A3) 3J. M. Davidenko, A. V. Pertsov, R. Salomonsz, W. Baxter, and J. Jalife,

X y X z
+ djaafjsrofiiant drevfiofics
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