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Critical Role of Crystalline Anisotropy in the Stability of Cellular Array Structures
in Directional Solidification

Przemek Kopczyn´ski, Wouter-Jan Rappel, and Alain Karma
Department of Physics and Center for Interdisciplinary Research on Complex Systems,

Northeastern University, Boston, Massachusetts 02115
(Received 10 June 1996)

We calculate numerically the full Floquet-Bloch stability spectrum of cellular array structures in
a symmetric model of directional solidification. Our results demonstrate that crystalline anisotropy
critically influences the stability of these structures. Without anisotropy, the stability balloon of cells
in the plane of wave number and velocity closes near the onset of morphological instability. With a
finite, but even small, amount of anisotropy this balloon remains open and a band of stable solutions
persists for higher velocities into a deep cell regime. The width of the balloon depends critically on the
anisotropy strength. [S0031-9007(96)01426-3]

PACS numbers: 81.10.Aj, 05.70.Ln, 81.30.Fb
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Directional solidification has been an important foc
of research in the pattern formation and materials scie
communities for many years [1]. In a generic experime
a binary liquid mixture contained between two narrow
spaced glass plates is pulled at constant velocity thro
an externally imposed temperature gradient. The m
phology of the solid-liquid interface depends sensitive
on the pulling velocity. Below a critical velocity the pla
nar interface is stable, and above this critical velocity
undergoes the well-known Mullins-Sekerka (MS) ins
bility [2] which gives rise to cellular array structures th
can exist for a range of spacings.

Close to the onset of instability, cells are typical
of small amplitude, while in an intermediate range
higher velocities, they develop a larger amplitude. T
latter structures are marked by deep liquid groov
that determine the scale of the final microsegregat
profile inside the solidified alloy, and hence its physic
properties. Therefore much effort has been devoted
the search for the instabilities which limit the range
possible stable spacings. However, despite more t
three decades since the MS analysis, there is still
coherent picture of cell stability in the low velocity regim
of directional solidification that has been traditiona
studied experimentally. In addition, it is not know
how stability is influenced by crystalline anisotropy th
is known to play a crucial role in interfacial patter
formation [3].

This lack of understanding is largely due to the techni
difficulty of calculating the stability of nonlinear structure
in nonlocal models of diffusion controlled growth, and
the fact that spatially extended arrays can be subject
broad range of instabilities. These can be either oscilla
or nonoscillatory (steady) and can range in wavelen
from the cell spacingl to very long wavelengths. Fo
these reasons, studies to date have been restricte
analyzing specific secondary instabilities [4–10], or
analyzing all possible instabilities but in a high veloci
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regime where the diffusive growth problem reduces
local equations [11].

A host of instabilities have so far been identifie
These include, in a low-velocity regime, the classic lo
wavelength Eckhaus instability [4,5], which is generica
present in one-dimensional pattern forming systems w
a finite band of linearly unstable wave numbers,
instability which reduces the cell spacing by 2 (ce
halving) [7,8], an oscillatory instability of deep cells wit
a wavelength equal to the cell spacingl [9,10], a parity
breaking instability with a wavelength equal tol, which
causes cells to grow asymmetrically [7,11], and, in
high-velocity regime [11], short wavelength oscillato
instabilities with a wavelength which is either equal
twice the cell spacings2l-Od, or irrationally related tol
(I-O). At present, however, it is not known (i) if any of th
low-velocity regime instabilities found so far are actual
relevant, that is, if they directly bound the band of stab
spacings, and (ii) if any of the instabilities found at hig
velocity pertain to the low velocity regime.

In this Letter, we present the results of the first nume
cal stability calculations of steady-state cells in direction
solidification in which perturbations on all wavelengths
the array are considered (i.e., the full Floquet-Block s
bility spectrum is calculated). This allows us to identi
unambiguously the relevant instabilities and to constr
the complete stability balloon for cells in the plane
wave numberq ­ 2pyl and velocityV above the on-
set velocityVc of the MS instability.

Our first finding is the existence of instabilities with
wavelength equal to twice the cell spacing which alwa
supersede the usual long wavelength Eckhaus instab
except in a negligibly small velocity range close
the onset. One of them is the aforementioned2l-O
instability, which is also present at high velocity [11] an
limits the array stability at large spacing. The other is
new instability with a wavelength also equal to twicel,
but which is steady (2l-S) and limits the array stability
© 1996 The American Physical Society 3387
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at small spacing. Physically, this instability gives rise
cell elimination (i.e., a local doubling of the cell spacing
and originates from the nonlocal interaction between ce
via the diffusion field.

Our second, and more important, finding is that cry
talline anisotropy has a crucial influence on the size
the stability balloon. With zero anisotropy, there are n
stable steady states above a maximum velocity which
relatively close toVc, and therefore the stability balloon
closes, while, with some anisotropy above a small cri
cal value, the stability balloon does not close and sta
deep cells are present at higher velocity. Moreover, t
width of the balloon depends sensitively on the anisotro
strength. Although our findings are for the symmetr
model with equal diffusivityD in both phases, we expec
the same general picture concerning the role of anisotro
to extend to the one-side model.

We study the equations of directional solidification fo
a dilute binary alloy in two dimensions

≠tu ­ D=2u 1 V≠zu , (1)

ui ­ 1 2 d0s1 1 15e cos4udk 2 jylT , (2)

fk 1 s1 2 kduigyn ­ 2Ds≠nujL 2 ≠nujSd , (3)

with a fourfold anisotropy in surface energy. Hereu ;
sC 2 C`dyDC0 is the dimensionless concentration field
C is the actual concentration,C` is the initial alloy
composition,DC0 ­ C`s1yk 2 1d is the miscibility gap
of the planar interface,d0 ­ GyjmjDC0 is the chemical
capillary length, G is the Gibbs-Thomson coefficient
k is the partition coefficient,m is the liquidus slope,
lT ­ jmjDCyG is the thermal length whereG is the
temperature gradient,k is the interface curvature,j
is the z coordinate of the interface,yn is the normal
velocity of the interface andV the pulling velocity
of the sample, ande is the small parameter which
measures the strength of anisotropy in surface ener
All the results presented here are for a value ofk ­ 0.9
and a fixed value ofd0ylT ­ 1.14 3 1023. For these
parameters, the dimensionless onset velocityVcd0yD ­
2.69 3 1023. We examined the velocity range betwee
Vc and 6Vc, which ranges from small to large amplitud
cells as shown in Fig. 1, and varied the anisotropy fro
0% to1 1

2 % se [ f0, 0.015gd.
Numerical procedure.—Our numerical stability cal-

culations are based on the now standard boundary
tegral approach [4–7,10], which makes it possible
recast Eqs. [1–3] into a single integral equation [6,7
Our procedure consists of three main steps. In the fi
step, we construct the steady-state interface shapesr0

qssd ­
x0

qssdx̂ 1 j0
qssdẑ of wave numberq, wheresq is the arc-

length. In the second step, we calculate the stability sp
trum by linearly perturbing the steady states with a sh
along the normal direction of the general form

rq ­ r0
qssd 1 n0

qssddq,Qssd expfiQlsys0
q 1 vsQ; qdtg ,
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FIG. 1. Calculated steady-state shapes for 0% and
anisotropy.

wheren0
q is the normal unit vectors0

q is the total arclength
of the cell over one complete period [i.e.,x0

qss 1 s0
qd ­

x0
qssd 1 l], and Qyq [ f0, 1y2g is the Bloch wave vec-

tor. The Floquet-Bloch theorem implies thatdq,Qssd is
a function which has the same periodicity as the und
lying steady states:dq,Qss 1 s0

qd ­ dq,Qssd. This calcu-
lation is equivalent to calculating the stability of a ce
lular array of infinite spatial extent against perturbatio
of all possible wavelengths. The complex growth ra
of the perturbationvsQ; qd is then obtained by solving
the eigenvalue problem resulting from the discretized li
ear integral equation. This second step in the calculat
uses the quasistationary approximation which consists
letting ≠tu ­ 0 in the diffusion equation. It therefore al-
lows us to obtain exactly the neutral stability boundari
of all possible nonoscillatory modes. These boundar
are not affected by this approximation sincevsQ, qd van-
ishes identically on them. The positions of the neutr
stability boundaries of oscillatory instabilities, howeve
depend crucially on this approximation. To predict tho
accurately, we perform in a third step a stability analys
that includes the≠tu term in the diffusion equation [12].
Rather than performing a Floquet-Bloch analysis, as
the quasistationary approximation, we have used a pre
ously developed method [10] which determines the s
bility of cellular arrays in a computational box of lengt
L ­ nl against perturbations with wavelengths small
or equal toL. Long wavelength instabilities can be inves
tigated by choosing more cells in the computational b
which enables us to construct the Floquet-Block spectru
In summary, the above three steps allow us to ident
the neutral stability boundaries of all possible waveleng
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FIG. 2. Stability balloon (shaded area) without anisotropy
the plane of wave numberq and velocity V. Shown are the
neutral stability boundaries of various modes: Eckhaus (sta
2l-S (open circles), and2l-O (filled triangles). Also shown
are the neutral stability boundary of the planar interface (so
line), the most unstable wave number (dashed line), andqmin
(filled diamonds).

perturbations of the array for the full diffusion problem
with ≠tu fi 0. Our results are presented in Figs. 2–5.

Relevant instabilities.—Both with zero (Fig. 2) and
finite (Fig. 3) anisotropy, the Eckhaus instability is onl
relevant very close to the onset. It is first supersed
on the large-q side of the stability balloon by the2l-S
instability. Cells are stable between the left and rig
neutral stability boundaries of this instability, but only th
right boundary bounds the balloon as shown explicitly
Fig. 2. It is then superseded on the small-q side of this
balloon by the2l-O instability.

Therefore the short wavelength2l-S and 2l-O insta-
bilities are the most relevant ones for cellular structur
in the present model since they directly bound almost t
entire stability balloon in both Figs. 2 and 3. These in

FIG. 3. Stability balloon with 1% anisotropy. The symbol
demarking the boundaries of the limiting instabilities ar
omitted for clarity. The other lines are defined as in Fig. 2.
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FIG. 4. Stability balloon in the plane of anisotropy and
wave number forV ­ 6Vc. The balloon is terminated at
small anisotropy by an irrational oscillatory mode I-O with a
wavelength longer than2l (dashed line).

stabilities correspond to real (2l-S) and complex (2l-O)
branches of the stability spectrumvsQ; qd which bifur-
cate at the edgeQyq ­ 1y2 of the first Brillouin zone as
shown in Fig. 5.

The stability balloon without anisotropy is qualitatively
similar to the one obtained in the high velocity limit
by Kassneret al. where Eqs. (1)–(3) can be reduced to
a local equation [11]. One main difference, howeve
is the presence here of the2l-S instability, which is
absent in the high velocity limit where the Eckhau
boundary remains the limiting instability at small spacing
Interestingly, a similar2l-S instability, which is possibly
related to the present one, has also been found to limit t
stability of dendrite arrays at small spacing [13].

Role of anisotropy.—This role can be directly seen
by contrasting Figs. 2 and 3, which show the stabilit
balloons for 0% and 1% anisotropy, respectively. With
out anisotropy, the balloon closes at a velocity, whic

FIG. 5. Floquet-Bloch spectrum for pointsA and B in Fig. 4.
The solid and open circles correspond to complex and re
values ofvsQ, qd, respectively.
3389
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is only about 30% larger thanVc due to the crossing
of the neutral stability boundaries of the dominant sho
wavelength modes. With anisotropy, the balloon remai
open for higher velocities in the deep cell regime. Th
role of anisotropy is further revealed in Fig. 4, which
shows the stability balloon as a function of anisotrop
and wave number at a fixed velocity in this regime
The width of the stable band increases dramatica
with anisotropy and is almost two times larger for1 1

2 %
anisotropy than for 1%. Furthermore, the balloon closes
a lower critical anisotropy due to the irrational oscillator
instability (I-O).

Other instabilities.—We have denoted in Fig. 2 by
diamonds the boundarysqmind that marks the small-q limit
of existence of the main branch of steady-state cel
Crossing of this boundary by increasingV at fixedq leads
to the cell halving described by Ramprasad and Brown [8
Cells, however, are already unstable before this bound
is reached such that it is not directly relevant here. Furth
from the onset, the small-q limit of the main branch of
steady-state cells corresponds to a fold (i.e., limit point)
this branch. This fold coincides with the zero crossin
of a real branch ofvsQ; qd at Q ­ 0 and the onset
of a localized tip-splitting mode. Tip splitting has bee
traditionally interpreted as a limit of stability for cells [14].
Here the boundary of this mode does not bound the stabil
balloon. This boundary, however, is relatively close an
runs parallel to that of the2l-O mode up as shown in
Fig. 3. This proximity suggests that it may be difficul
to distinguish between these two instabilities. This ma
explain why tip splitting is more commonly observed
experimentally, although2l- oscillations have also been
seen in numerical simulations [15]. Omitted from Fig.
is the neutral stability boundary of the parity-breakin
instability to tilted cells which lies outside the stability
balloon [7]. Finally, the previously found oscillatory
instability of deep cells on one wavelength [9,10] is onl
present for much largerq and also lies outside this balloon

We conclude with a few remarks concerning the rele
vance of our results for experiment. Figure 3 shows th
the most unstable wave number of the planar interfa
crosses the band of stable wave numbers. This cro
ing agrees qualitatively with experimental results to dat
which have consistently found that the most unstable wa
number is smaller than the experimentally observed c
wave number near the onset [16,17], but larger than the l
ter far from onset [18]. A more important implication of
our results is thatstablecellular array structures should no
be generically observable without anisotropy except ve
close to the onset. This is qualitatively consistent bo
with the recent experiments of Akamatsuet al. [19], who
observed a spatiotemporally chaotic growth morpholog
when they (effectively) eliminated anisotropy by a judi
cious choice of grain orientation, and with their numerica
simulations of the one-sided model with zero anisotrop
3390
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which reveal a similar behavior. What remains to be u
derstood is whether the relatively narrow band of spacin
present with anisotropy can be accessed dynamically st
ing from realistic initial conditions. This does not seem
obvious since there may exist other attractors for the d
namics even if this stable band is present. Or this band m
be too narrow to be selected in which case it would on
become an attractor at larger anisotropy where it is mu
broader. These pattern selection issues are currently be
investigated using a phase field approach [20].
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National Energy Resources Supercomputer Center.
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