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Critical Role of Crystalline Anisotropy in the Stability of Cellular Array Structures
in Directional Solidification
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We calculate numerically the full Floquet-Bloch stability spectrum of cellular array structures in
a symmetric model of directional solidification. Our results demonstrate that crystalline anisotropy
critically influences the stability of these structures. Without anisotropy, the stability balloon of cells
in the plane of wave number and velocity closes near the onset of morphological instability. With a
finite, but even small, amount of anisotropy this balloon remains open and a band of stable solutions
persists for higher velocities into a deep cell regime. The width of the balloon depends critically on the
anisotropy strength. [S0031-9007(96)01426-3]

PACS numbers: 81.10.Aj, 05.70.Ln, 81.30.Fb

Directional solidification has been an important focusregime where the diffusive growth problem reduces to
of research in the pattern formation and materials scienclecal equations [11].
communities for many years [1]. In a generic experiment, A host of instabilities have so far been identified.
a binary liquid mixture contained between two narrowly These include, in a low-velocity regime, the classic long
spaced glass plates is pulled at constant velocity througivavelength Eckhaus instability [4,5], which is generically
an externally imposed temperature gradient. The morpresent in one-dimensional pattern forming systems with
phology of the solid-liquid interface depends sensitivelya finite band of linearly unstable wave numbers, an
on the pulling velocity. Below a critical velocity the pla- instability which reduces the cell spacing by 2 (cell
nar interface is stable, and above this critical velocity ithalving) [7,8], an oscillatory instability of deep cells with
undergoes the well-known Mullins-Sekerka (MS) insta-a wavelength equal to the cell spacing9,10], a parity
bility [2] which gives rise to cellular array structures that breaking instability with a wavelength equal 40 which
can exist for a range of spacings. causes cells to grow asymmetrically [7,11], and, in a

Close to the onset of instability, cells are typically high-velocity regime [11], short wavelength oscillatory
of small amplitude, while in an intermediate range ofinstabilities with a wavelength which is either equal to
higher velocities, they develop a larger amplitude. Thewice the cell spacing2-0), or irrationally related to
latter structures are marked by deep liquid groovegl-O). At present, however, it is not known (i) if any of the
that determine the scale of the final microsegregatiotow-velocity regime instabilities found so far are actually
profile inside the solidified alloy, and hence its physicalrelevant, that is, if they directly bound the band of stable
properties. Therefore much effort has been devoted tspacings, and (ii) if any of the instabilities found at high
the search for the instabilities which limit the range ofvelocity pertain to the low velocity regime.
possible stable spacings. However, despite more than In this Letter, we present the results of the first numeri-
three decades since the MS analysis, there is still noal stability calculations of steady-state cells in directional
coherent picture of cell stability in the low velocity regime solidification in which perturbations on all wavelengths of
of directional solidification that has been traditionally the array are considered (i.e., the full Floquet-Block sta-
studied experimentally. In addition, it is not known bility spectrum is calculated). This allows us to identify
how stability is influenced by crystalline anisotropy thatunambiguously the relevant instabilities and to construct
is known to play a crucial role in interfacial pattern the complete stability balloon for cells in the plane of
formation [3]. wave numberg = 27 /A and velocityV above the on-

This lack of understanding is largely due to the technicabket velocityV. of the MS instability.
difficulty of calculating the stability of nonlinear structures  Our first finding is the existence of instabilities with a
in nonlocal models of diffusion controlled growth, and to wavelength equal to twice the cell spacing which always
the fact that spatially extended arrays can be subject to supersede the usual long wavelength Eckhaus instability,
broad range of instabilities. These can be either oscillatorgxcept in a negligibly small velocity range close to
or nonoscillatory (steady) and can range in wavelengtthe onset. One of them is the aforementiori2ttO
from the cell spacing\ to very long wavelengths. For instability, which is also present at high velocity [11] and
these reasons, studies to date have been restricted ltmits the array stability at large spacing. The other is a
analyzing specific secondary instabilities [4—10], or tonew instability with a wavelength also equal to twiae
analyzing all possible instabilities but in a high velocity but which is steady2(A-S) and limits the array stability
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at small spacing. Physically, this instability gives rise to
cell elimination (i.e., a local doubling of the cell spacing) v=6v,
and originates from the nonlocal interaction between cells
via the diffusion field.

Our second, and more important, finding is that crys-
talline anisotropy has a crucial influence on the size of
the stability balloon. With zero anisotropy, there are no
stable steady states above a maximum velocity which is
relatively close toV,., and therefore the stability balloon
closes, while, with some anisotropy above a small criti-
cal value, the stability balloon does not close and stable
deep cells are present at higher velocity. Moreover, the
width of the balloon depends sensitively on the anisotropy
strength. Although our findings are for the symmetric
model with equal diffusivityD in both phases, we expect

the same general picture concerning the role of anisotropy /‘V"\
to extend to the one-side model. v=1.1v,

We study the equations of directional solidification for
a dilute binary alloy in two dimensions

2 FIG. 1. Calculated steady-state shapes for 0% and 1%
d,u=DV?u + Vi.u, (1) anisotropy.

w=1—do(l + 15ecosdf)ic — &/lr,  (2)
[k + (1 - k)ui]vn = _D(anulL - an”lS)’ (3)

with a fourfold anisotropy in surface energy. Here=

(C = Cx)/ACy is the dimensionless concentration field, =, -
C is the actual concentration(., is the initial alloy *¢(s) = Al, andQ/q € [0,1/2] is the Bloch wave vec-
composition,ACy = C..(1/k — 1) is the miscibility gap tOF- The Floquet-Bloch theorem implies thaf o(s) is

of the planar interfacedo = I'/|m|ACy is the chemical a_functlon which has the sa(r)ne periodicity as the under-
capillary length, T’ is the Gibbs-Thomson coefficient, Ying steady statesd, o(s + s,) = 8,.0(s). This calcu-

k is the partition coefficientm is the liquidus slope, ation is equivalent to calculating the stability of a cel-
Iy = |m|AC/G is the thermal length wher& is the lular array of infinite spatial extent against perturbations
temperature gradientx is the interface curvatureg  Of all possible wavelengths. The complex growth rate
is the z coordinate of the interfacey, is the normal ©f the perturbation(Q: ¢) is then obtained by solving
velocity of the interface andv the pulling velocity the eigenvalue problem resulting from the discretized lin-
of the sample, ande is the small parameter which €2 integral equation. This second step in the calculation
measures the strength of anisotropy in surface energ{'S€S the quasistationary approximation which consists in

All the results presented here are for a valugof 0.9  eting d,u = 0 in the diffusion equation. It therefore al-
and a fixed value ofly/ly = 1.14 X 1073, For these lows us to obtain exactly the neutral stability boundaries

parameters, the dimensionless onset velobitgy/D = of all possible nonoscillatory modes. These boundaries
2.69 X 1073. We examined the velocity range between@r€ not affected by this approximation sine€g, ¢) van-
V. and6V,, which ranges from small to large amplitude ishes identically on them. The positions of the neutral

cells as shown in Fig. 1, and varied the anisotropy fromc,tability boundaries of oscillatory instabilities, however,
0% to 1% (e €0 OOlSj) depend crucially on this approximation. To predict those
5 ,0. .

accurately, we perform in a third step a stability analysis

culations are based on the now standard boundary i hatthincltuhdes the?cf” term in gl]e dif:u;:onhequa}ior) [12]. .
tegral approach [4-7,10], which makes it possible totha er _atnt_per orming a otque- OE anays(;s, as n
recast Egs. [1-3] into a single integral equation [6,7]. € quasistationary approximation, we have used a previ-

Our procedure consists of three main steps. In the firsg.USIy developed method [10] which determines the sta-

step, we construct the steady-state interface shagpebz ility of ceIIu_Iar arrays in a computational box of length
07 v 0/ \a . L = nA against perturbations with wavelengths smaller
x,(s)x + £,(s)z of wave numbeuq, wheres, is the arc-

length. In the second step, we calculate the stability spe or equal toL. Long wavelength instabilities can be inves-

trum by linearly perturbing the steady states with a shift'ga.lteOI by choosing more cells in the computational box
L which enables us to construct the Floquet-Block spectrum.
along the normal direction of the general form

In summary, the above three steps allow us to identify
r, = ry(s) + n)(s)8,.0(s)exdiQAs/s) + w(Q:q)t], the neutral stability boundaries of all possible wavelength

Wheren?] is the normal unit VeCt0f2 is the total arclength
of the cell over one complete period [i.e.g(s + sg) =

Numerical procedure—Our numerical stability cal-
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FIG. 2. Stability balloon (shaded area) without anisotropy inFIG. 4. Stability balloon in the plane of anisotropy and
the plane of wave numbey and velocityV. Shown are the wave number forV = 6V.. The balloon is terminated at
neutral stability boundaries of various modes: Eckhaus (starsymall anisotropy by an irrational oscillatory mode I-O with a
2A-S (open circles), an@A-O (filled triangles). Also shown wavelength longer thadi (dashed line).

are the neutral stability boundary of the planar interface (solid

line), the most unstable wave number (dashed line), @and o

(filled diamonds). stabilities correspond to rea2{-S) and complex ZA-O)
branches of the stability spectrum(Q; g) which bifur-
cate at the edg®/qg = 1/2 of the first Brillouin zone as

perturbations of the array for the full diffusion problem ¢p,qnin Fig. 5.

with 9,u # 0. Our results are presented in Figs. 2-5. The stabilit ; ; ; ot
: o i ) y balloon without anisotropy is qualitatively
Relevant instabilities—Both with zero (Fig. 2) and gmijar 1o the one obtained in the high velocity limit

finite (Fig. 3) anisotropy, the Eckhaus_ins_tability is only y Kassneret al. where Egs. (1)—(3) can be reduced to
relevant very close to the onset. It is first supersede(g local equation [11]. One main difference, however

on the largeg side of the stability balloon by theA-S i the nresence here of th-S instability, which is
instability. Cells are stable between the left and right

h ! L . absent in the high velocity limit where the Eckhaus
neutral stability boundaries of this instability, but only the boundary remains the limiting instability at small spacing.

rlght boundary bounds the balloon as Shovv_n eXpI'C'FIy 'Mnterestingly, a simila2A-S instability, which is possibly
Fig. 2. Itis then sgpersg(_jed on the smpbide of this related to the present one, has also been found to limit the
balloon by the2A-O instability. . stability of dendrite arrays at small spacing [13].

Therefore the short wavelengfi-S and 2-O insta- Role of anisotropy—This role can be directly seen

bilities are the most relevant ones for cellular structuresby contrasting Figs. 2 and 3, which show the stability

in the present model since they directly bound almost _th%alloons for 0% and 1% anisotropy, respectively. With-

entire stability balloon in both Figs. 2 and 3. These IN-out anisotropy, the balloon closes at a velocity, which

B :
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FIG. 3. Stability balloon with 1% anisotropy. The symbols FIG. 5. Floquet-Bloch spectrum for poingsandB in Fig. 4.

demarking the boundaries of the limiting instabilities are The solid and open circles correspond to complex and real
omitted for clarity. The other lines are defined as in Fig. 2.  values ofw(Q, q), respectively.
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is only about 30% larger thaiw,. due to the crossing which reveal a similar behavior. What remains to be un-
of the neutral stability boundaries of the dominant shortderstood is whether the relatively narrow band of spacings
wavelength modes. With anisotropy, the balloon remainpresent with anisotropy can be accessed dynamically start-
open for higher velocities in the deep cell regime. Theing from realistic initial conditions. This does not seem
role of anisotropy is further revealed in Fig. 4, which obvious since there may exist other attractors for the dy-
shows the stability balloon as a function of anisotropynamics even if this stable band is present. Or this band may
and wave number at a fixed velocity in this regime.be too narrow to be selected in which case it would only
The width of the stable band increases dramaticallypecome an attractor at larger anisotropy where it is much
with anisotropy and is almost two times larger fof%  broader. These pattern selection issues are currently being
anisotropy than for 1%. Furthermore, the balloon closes anvestigated using a phase field approach [20].
a lower critical anisotropy due to the irrational oscillatory ~ This research was supported by DOE Grant No. DE-
instability (1-O). FG02-92ER45471 and benefited from CRAY time at the
Other instabilities—We have denoted in Fig. 2 by National Energy Resources Supercomputer Center.
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