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Many motile eukaryotic cells determine their direction by measuring external chemical gradients
through the binding of ligands to membrane bound receptors. This process is limited by fluctuations
arising from the binding process and from the diffusion of the ligand molecules. Here, we apply
estimation-theoretic methods to determine the physical limits of gradient sensing for cells that are
non-circular and for cells that have an internal bias. Specifically, we derive theoretical expressions
for the accuracy of gradient sensing in elliptical cells. This accuracy for highly elliptical cells can
significantly deviate from the gradient sensing limits derived for circular cells. Furthermore, we
find that a cell cannot improve its sensing of the gradient steepness and direction simultaneously
by elongating its cell body. Finally, we derive a lower bound on the accuracy of gradient sensing
for cells that possess an internal bias and compare our analytical results with recent experimental
findings.
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I. INTRODUCTION

The response in biological systems to external stim-
uli is often limited by the inherent stochasticity of these
stimuli.For example, the accuracy of human (and other
vertebrate) vision at low light intensities approaches a
fundamental limit set by statistical fluctuations of the
number of absorbed photons [1, 2]. Another example in-
cludes the embryo patterning along the anterior-posterior
axis of the fly Drosophila melanogaster which is primar-
ily determined by concentration profiles of certain mor-
phogens [3]. The accuracy of the resulting pattern is
limited by the noise levels in these profiles. A final exam-
ple is provided by chemotaxis, the directed movement of
cells up or down a chemical gradient. In both prokaryotic
chemotaxis, where cells measure and compare concentra-
tion signals over time [4, 5], and in eukaryotic chemotaxis,
where cells measure concentration differences in space
[6, 7], the precision of gradient sensing is limited by the
stochastic binding of diffusing chemical molecules (lig-
ands) to specific chemoreceptors on the cell membrane.

In this paper, we will apply techniques from estimation
theory, which attempts to estimate the values of parame-
ters based on measured data that contain a random com-
ponent [8], to eukaryotic gradient sensing. Even though
our approach and results are applicable in a general way,
we will focus mainly on the social amoeba Dictyostelium
discoideum, a well-characterized model system [9, 10].
Specific G-protein coupled receptors on the Dictyostelium
cell membrane bind and detect the chemoattractants in
the surrounding medium. This results in an asymmetric
distribution of ligand-occupied receptors, which further
activates multiple second-messenger pathways inside the
cell and drive the extension of pseudopods preferentially
in the direction of the chemoattractant gradient. Due to
fluctuations in the ligand binding to chemoreceptors, the
receptor signal is inherently noisy, as demonstrated by
recent single-molecule imaging experiment [11]. Surpris-

ingly, Dictyostelium cells exhibit extremely high sensitiv-
ity to gradients, as they have been observed to be able
to detect a 1 − 2% difference in chemical concentration
across the cell length [12, 13]. The difference in receptor
occupancy between the front and back halves of a cell
in these shallow gradients can be calculated to be 10-30.
This raises a puzzle about eukaryotic chemotaxis: how
can cells reliably acquire the gradient information from
such a noisy receptor signal?

In 1977, Berg and Purcell analyzed bacterial chemo-
taxis and demonstrated that the limit of uncertainty of
concentration sensing is set by the diffusion of ligand
particles [14]. Their seminal work has been extended
by many others [15–19]. The results of Berg and Pur-
cell, however, do not completely carry over to eukaryotic
cells, which employ a spatial sensing mechanism. In this
mechanism, and in contrast to prokaryotic chemotaxis,
cells use the spatial asymmetry (including the gradient
steepness and direction) to direct their motion. A num-
ber of studies have been carried out to reveal the limits
to spatial gradient sensing, but are either only applicable
to idealized mechanisms that ignore the receptor kinet-
ics [18], adopt heuristic signaling models [20, 21] or use
a simplified geometry [22]. We recently addressed this
problem for circular cells using a general statistical me-
chanical approach, where we view the surface receptors
as a (possibly coupled) spin chain and treat the chem-
ical gradient as a perturbation field [23]. By calculat-
ing the system’s partition function, we were able to de-
rive the gradient sensing limits for either independent
receptors or receptors exhibiting cooperativity. Further-
more, using information theoretical concepts and com-
paring theoretical results with experiments of chemotax-
ing Dictyostelium cells, we have shown that for shallow
gradients and low background concentrations, the accu-
racy of gradient sensing is upper-bounded by fluctuations
at the receptor level [13, 24].

In this paper, we will first revisit the spatial gradi-
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ent sensing problem for circular cell shapes using purely
estimation-theoretic methods (Section II). This will be
the foundation for our extension to the elliptical cell
shapes in the next section (Section III). Finally, we will
examine how a possible intracellular bias can affect the
perceived gradient and compare our results with recent
experimental data (Section IV).

II. GRADIENT SENSING FOR A CIRCULAR
CELL

We revisit the gradient sensing problem which we have
examined in our previous paper using the method of max-
imum likelihood estimate (MLE) [8, 19, 23]. Consider
a circular cell with diameter L placed in a chemoat-
tractant gradient and assume that there are N recep-
tors uniformly distributed on the cell perimeter. The
angular coordinates of these receptors are denoted by
ϕn for n = 1, ..., N , which satisfy the uniform distri-
bution P (ϕn) = 1/(2π). We further assume that the
gradient field takes an exponential profile as has recently
been realized in experiments [13, 25]. Then the local
concentration at the n-th receptor can be expressed as
Cn = C0 exp

[
p
2 cos(ϕn − φ)

]
, where C0 is the ambient

(mean) concentration, p ≡ L
C0
|~∇C| defines the gradi-

ent steepness that quantifies the percentage concentra-
tion change across the cell length L, and φ denotes the
gradient direction. Each receptor switches independently
between two states, either empty (0) or occupied (1),
with transition rates determined by the local concentra-
tion and the relevant chemical kinetics. Therefore, these
receptors in a single snapshot constitute a series of inde-
pendent Bernoulli random variables, represented by

xn =

{
1, with probability Pn,

0, with probability 1− Pn,
(1)

for n = 1, ..., N . For simple ligand-receptor kinetics,
the occupancy probability of the nth receptor is Pn =
Cn/(Cn + Kd), where Kd = k−/k+ is the dissociation
constant. The probability mass distribution for Eq. (1)
can be expressed as:

fn(xn|Θ) = P xn
n (1− Pn)1−xn , for xn ∈ {0, 1}, (2)

where Θ ≡ {p, φ} represents the parameters to estimate.
Therefore, the likelihood function for a sample of N in-
dependent receptors is given by

L(Θ|x1, ..., xN ) = f(x1, ..., xN |Θ) =
N∏

n=1

fn(xn|Θ), (3)

and the log-likelihood function is

lnL =
∑

n

[
xn ln

Cn

Cn + Kd
+ (1− xn) ln

Kd

Cn + Kd

]
=

∑
n

xn ln
Cn

Kd
+

∑
n

ln
Kd

Cn + Kd

=
1
2

∑
n

xnp cos(ϕn − φ) + ln
C0

Kd

∑
n

xn

+
∫ 2π

0

N

2π
ln

[
Kd

C0 exp
[

p
2 cos(ϕ− φ)

]
+ Kd

]
dϕ

=
p cos φ

2

∑
n

xn cos ϕn +
p sinφ

2

∑
n

xn sinϕn

+ ln
C0

Kd

∑
n

xn −
NC0Kdp

2

16(C0 + Kd)2
+O(p4). (4)

Here, we introduce the transformation Θα =
(α1, α2)T ≡ (p cos φ, p sinφ)T and define (z1, z2) ≡
(
∑

n xn cos ϕn,
∑

n xn sinϕn) which measures the spatial
asymmetry in the receptor occupancy. Then, we have
p2 = α2

1 +α2
2, and for shallow gradients the log-likelihood

function becomes

lnL ≈ α1z1 + α2z2

2
+ ln

C0

Kd

∑
n

xn −
NC0Kd(α2

1 + α2
2)

16(C0 + Kd)2
.

(5)
The method of maximum likelihood estimates the un-
known parameters by finding a value of Θα that maxi-
mizes L(Θα|x1, ..., xN ), i.e.,

Θ̂α,mle = arg max
Θα

L(Θα|x1, ..., xN ), (6)

where the subscript “mle” denotes the maximum like-
lihood estimator. Since the logarithm is a continuous
strictly increasing function over the range of the likeli-
hood, the values which maximize the likelihood will also
maximize its logarithm. Thus, the MLE can be found
from ∂α1 lnL = 0 and ∂α2 lnL = 0, with the following
solution

Θ̂α,mle =
(

α̂1

α̂2

)
=

1
µ

(
z1

z2

)
, where µ ≡ NC0Kd

4(C0 + Kd)2
.

(7)
This solution is indeed the maximum of the likelihood
function since it is the only turning point in Θα and
the second derivative is strictly less than zero. By the
properties of MLE, both α̂1 and α̂2 are asymptotically
unbiased and normal as the sample size N goes to in-
finity, i.e., α̂1

d−→ N (α1, σ
2
1) and α̂2

d−→ N (α2, σ
2
2), where

“ d−→” denotes convergence in distribution. The asymp-
totic variances σ2

1 and σ2
2 can be derived from the inverse

of the Fisher information matrix [8, 19]. This matrix has
to be diagonal here as α1 and α2 are independent of each
other. Thus, we have

1
σ2

1,2

=

〈(
∂ lnL
∂α1,2

)2
〉

= −

〈
∂2 lnL
∂α2

1,2

〉
=

µ

2
, (8)
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where <> represents the expectation and the proof of
the second equality can be found in [8]. This equality
holds because lnL is twice differentiable with respect to
α1 and α2. From the relation α̂1,2 = z1,2/µ, we can see
that < z1,2 >= µα1,2 and that the asymptotic variances
of z1 and z2 are equal:

σ2 = µ2σ2
1,2 = 2µ2/µ = 2µ. (9)

In addition, one can check that the covariance is
Cov[z1, z2] = 0, as reflected in the affine form of the log-
likelihood: lnL = α1z1/2 + α2z2/2 + .... Thus, for small
p, the joint probability density of z1 and z2 is [23, 25]:

P (z1, z2|Θα) =
1

2πσ2
exp

[
− (z1 − µα1)2 + (z2 − µα2)2

2σ2

]
.

(10)
As the one-to-one transformation of Θ̂α,mle, the MLE of
Θ = (p, φ)T is given by

Θ̂mle =
(

p̂

φ̂

)
=

(
µ−1

√
z2
1 + z2

2

arctan(z2/z1)

)
. (11)

If we introduce the complex random variable Z ≡ z1+iz2,
then Z follows the complex Gaussian distribution, and in
the polar coordinates Z = µp̂ exp(iφ̂). Eq. (10) suggests
that we can define a signal-to-noise (SNR) ratio

κ ≡ µ2p2

σ2
=

µp2

2
=

Np2C0Kd

8(C0 + Kd)2
. (12)

Again, by the properties of MLE, both p̂ and φ̂ tend
to be unbiased and normal in the large N limit, i.e.,
p̂

d−→ N (p, σ2
p) and φ̂

d−→ N (φ, σ2
φ). It has been found

numerically that the asymptotic normality becomes ex-
cellent when the SNR is larger than 9 [25, 26]. Similarly,
the asymptotic variances σ2

p and σ2
φ can be computed

from the inverse of the Fisher information matrix with
respect to Θ = (p, φ). The matrix is still diagonal due to
the orthogonality of p and φ. Thus, we have

1
σ2

p

=

〈(
∂ lnL

∂p

)2
〉

= −
〈

∂2 lnL
∂p2

〉
=

µ

2
, (13)

1
σ2

φ

=

〈(
∂ lnL
∂φ

)2
〉

= −
〈

∂2 lnL
∂φ2

〉
=

µp2

2
, (14)

or equivalently

σ2
p =

8(C0 + Kd)2

NC0Kd
and σ2

φ =
8(C0 + Kd)2

Np2C0Kd
=

1
κ

. (15)

The above results are identical to the ones we have re-
cently derived in [23]. According to the Cramér-Rao in-
equality, the variances σ2

p and σ2
φ represent the minimal

uncertainties of gradient measurements from an instan-
taneous sampling of the receptor states [8].

If the cell in question integrates receptor signals over
some time interval T , then averaging over multiple mea-
surements should obviously reduce the errors of gradi-
ent sensing. However, the error-reduction via tempo-
ral averaging is limited by the expected time it takes
to perform an independent measurement. As shown in
[17, 27], the time to make a single measurement is roughly
twice the receptor correlation time τ . Hence, the num-
ber of independent measurements a cell can make within
T is about T /(2τ). The correlation time can be decom-
posed as τ = τrec + τdiff , where τrec = 1/(k− + C0k+)
is the time-scale of receptor-ligand reaction and τdiff '
N/(2πDLKd) describes the diffusion noise correlation
time [15, 17, 20, 21, 23]. Let η ≡ τdiff/τrec, then the
measurement is said to be reaction-limited if η � 1 and
diffusion-limited if η � 1 [28]. Combining the above ar-
guments, we find that integrating signals over T yields
better gradient estimate,

σ2
p,T '

2τ

T
σ2

p =
4τrec(1 + η)

µT
=

16(1 + η)(C0 + Kd)
NT k−C0

.(16)

We can derive similar results for the direction inference,
since σ2

φ,T = σ2
p,T /p2. For typical eukaryotic cells, it has

been estimated [17, 28] that η � 1, which implies that
σ2

φ,T ' 16(C0 + Kd)/(Np2T k−C0).

An implicit assumption in the above derivation as well
as in our previous paper [23] is that a cell can tell the
location of each individual receptor. This is reflected
in (z1, z2) ≡ (

∑
n xn cos ϕn,

∑
n xn sinϕn) which keeps

track of every individual receptor and its spatial posi-
tion. Since the density of receptors on the cell surface
can be high, one may argue that the cell cannot distin-
guish between receptors that are very close to each other.
We can, however, easily relax this assumption by taking
advantage of the Central Limit Theorem (CLT). To see
this, we divide the cell surface into M small sensory sec-
tors such that receptors in the same sector are responding
to an almost identical chemical concentration. Therefore,
receptors in the same sector can be regarded as indepen-
dent and identically distributed (Bernoulli) random vari-
ables, and the state of each sector is represented by its
receptor occupancy number which follows the binomial
distribution. One can think of M as a quantity that re-
flects to what extent the cell can spatially distinguish its
receptors. Of course, we want to ensure that the number
of receptors in each sector Ns = N/M is large enough for
the application of CLT. Here, we will choose M = 1000
and N = 40, 000, leading to Ns = 40. Now the local
concentration at the mth sector with angular position
ϑm = 2πm/M is given by Cm = C0 exp

[
p
2 cos(ϑm − φ)

]
for m = 1, ...,M . Using the CLT, the number of occu-
pied receptors in the mth sector in a single snapshot,
ym, is approximately ym = NsCm/(Cm + Kd) + ηm

(m = 1, ...,M), where the Gaussian random component
ηm satisfies 〈ηm〉 = 0 and 〈ηmηn〉 = δmnNsCmKd/(Cm +
Kd)2 ≈ δmnNsC0Kd/(C0 + Kd)2 [20, 21, 28]. For small



4

gradients, we can expand ym around p:

ym ≈ NsC0

Kd + C0
+

NsKdC0

2(C0 + Kd)2
p cos(ϑm−φ) + ηm. (17)

We can see that the sector states, denoted by
Y = {y1, y2, ..., yM}T , constitute a vector of indepen-
dent Gaussian random variables with space-dependent
means but approximately identical variance σ2

s ≡
NsKdC0/(C0 + Kd)2. Hereafter, the superscript sym-
bol T means transpose. Eq. (17) suggest that one can
view Y = {y1, y2, ..., yM}T as observations of a sinusoidal
signal corrupted by some white Gaussian noise. The like-
lihood function of Y conditional on Θ reads,

P (Y|Θ) ≈ 1
(2πσ2

s)M/2
exp

[
−J(Y|Θ)

2σ2
s

]
, (18)

where

J(Y|Θ) =
M∑

m=1

(
ym − NsC0

C0 + Kd
− σ2

s

2
p cos(ϑm − φ)

)2

.

(19)
To maximize P (Y|Θ) is equivalent to minimize J(Y|Θ)
which can be converted to a quadratic function by
the one-to-one transformation Θα = (α1, α2)T =
(p cos φ, p sinφ)T :

J(Y|Θα) = (Y−Y0 −HΘα)T (Y−Y0 −HΘα), (20)

with

Y0 =
NsC0

C0 + Kd

 1
1
...
1

 and H =
σ2

s

2

 cos ϑ1 sinϑ1

cos ϑ2 sinϑ2

... ...
cos ϑM sinϑM


We can apply the formula of ordinary least squares (OLS)
estimate to find the MLE solution that minimizes the
quadratic objective function J(Y|Θα) and hence maxi-
mizes the likelihood function P (Y|Θα):

Θ̂α,mle = (HT H)−1HT (Y −Y0). (21)

For large M , we have 1
M

∑
m cos ϑm ≈ 1

M

∑
m sinϑm ≈

0, 1
M

∑
m cos ϑm sinϑm ≈ 0, and 1

M

∑
m cos2 ϑm ≈

1
M

∑
m sin2 ϑm ≈ 1/2. Thus,

Θ̂α,mle =
(

α̂1

α̂2

)
≈ 4

σ4
s

(
M/2 0

0 M/2

)−1

HT (Y −Y0)

=
4(C0 + Kd)2

NKdC0

( ∑
m ym cos ϑm∑
m ym sinϑm

)
' 1

µ

(
z1

z2

)
,

where in the last line we have noticed that z1 =∑
n xn cos ϕn '

∑
m ym cos ϑm and z2 =

∑
n xn sinϕn '∑

m ym sinϑm for sufficiently large M . By inverse map-
ping, we recover the MLE of Θ given in Eq. (11). Ac-
cording to the asymptotic properties, Θ̂mle = (p̂, φ̂)T d−→

ab f

dK k k− +=
p
φ

Steepness

Direction

+

Dissociation Constant

C0

k−

k+

Exponential Gradient Simple Ligand-
Receptor Kinetics

FIG. 1: (Color online) Schematic representation of our model:
an elliptical cell, covered with receptors, is placed in an ex-
ponential gradient. The angle between the direction of the
gradient and the major axis of the elliptical cell is denoted by
φ. The forward and backward rates k± control the transition
between the bound and unbound states for the receptors.

N
(
Θ, I(Θ)−1

)
, with the Fisher information matrix:

I(Θ) =
〈

∂ lnP (Y|Θ)
∂Θi

∂ lnP (Y|Θ)
∂Θj

〉
≈

(
Mσ2

s/8 0
0 Mσ2

sp2/8

)
=

(
µ/2 0
0 µp2/2

)
. (22)

Then, we recover our main MLE results:

p̂ = µ−1
√

z2
1 + z2

2
d−→ N

(
p, σ2

p =
2
µ

)
, (23)

φ̂ = arctan(z2/z1)
d−→ N

(
φ, σ2

φ =
2

µp2

)
. (24)

III. GRADIENT SENSING FOR AN
ELLIPTICAL CELL

Motile eukaryotic cells can become polarized and ex-
hibit elongated shapes, which may affect the capacity of
gradient sensing. In this section, we analyze a chemo-
tactic cell with an elliptical geometry (Fig. 1). The el-
lipse can be described in parametric form (X(ω), Y (ω)) =
(a cos ω, b sinω), where a is the semi-major axis, b is semi-
minor axis (thus b ≤ a) and 0 6 ω 6 2π. With ϑ = 0
measured from the major axis, the ellipse can also be
described in polar coordinates by

r(ϑ) =
ab√

(a sinϑ)2 + (b cos ϑ)2
=

b√
1− (ε cos ϑ)2

,

(25)
where ε ≡

√
1− (b/a)2 is the eccentricity of the ellipse

and measures how much the geometry deviates from be-
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ing circular. Obviously, ω and ϑ are related through

tanϑ = tan
[

Y (ω)
X(ω)

]
=

b

a
tanω =

√
1− ε2 tanω,(26)

r(ϑ) = b/
√

1− ε2 cos2 ϑ =
√

X(ω)2 + Y (ω)2

= a
√

1− ε2 sin2 ω = r(ω). (27)

As before, we distribute the receptors uniformly along
the cell circumference and divide the cell’s circumfer-
ence into M sectors with identical arc lengths (containing
Ns = N/M receptors). In the exponential gradient, the
local concentration at the mth sector with polar angle ϑm

and radius rm is

Cm = C0 exp

[
|~∇C|
C0

rm cos(ϑm − φ)

]
= C0 exp

[p

2
rm

a
cos(ϑm(ωm)− φ)

]
= C0 exp

[
p

2
cos(ϑm − φ)

√
1− ε2 sin2 ωm

]
,(28)

where φ is the gradient direction measured from the ma-
jor axis and p ≡ 2a|~∇C|/C0 is the gradient steepness that
quantifies the percentage concentration change across the
major axis 2a. Here, we have used that

rm = r(ωm) = a

√
1− ε2 sin2 ωm

= r(ϑm) = b/
√

1− ε2 cos2 ϑm. (29)

As before, the receptor occupancy number is ym =
NsCm/(Cm + Kd) + ηm, for m = 1, ...,M . For shallow
gradients, we can expand ym to leading order in p:

ym ≈ NsC0

Kd + C0
+

NsKdC0

2(C0 + Kd)2
rm

a
p cos(ϑm − φ) + ηm.

(30)
where the random component ηm is approximately nor-
mal: 〈ηm〉 = 0 and 〈ηmηn〉 = δmnNsCmKd/(Cm +
Kd)2 ≈ δmnNsC0Kd/(C0 + Kd)2 = δmnσ2

s . Thus, the
likelihood function of Y = {y1, y2, ..., yM}T is P (Y|Θ) ≈
(2πσ2

s)−M/2 exp[−J̃/(2σ2
s)], where

J̃ =
M∑

m=1

[
ym − NsC0

C0 + Kd
− σ2

srm

2a
p cos(ϑm − φ)

]2

= (Y −Y0 − H̃Θα)T (Y −Y0 − H̃Θα), (31)

with Θα = (α1, α2)T = (p cos φ, p sinφ)T and

H̃ =
σ2

s

2a

 r1 cos ϑ1 r1 sinϑ1

r2 cos ϑ2 r2 sinϑ2

... ...
rM cos ϑM rM sinϑM

 . (32)

Thus, the MLE of Θα is

Θ̃α,mle = (α̃1, α̃2)T = (H̃T H̃)−1H̃T (Y −Y0). (33)

Due to symmetry, one can directly find that

M∑
m=1

rm cos ϑm =
M∑

m=1

r(ϑm) cos ϑm = 0, (34)

M∑
m=1

rm sinϑm =
M∑

m=1

r(ϑm) sinϑm = 0, (35)

M∑
m=1

r(ϑm)2 cos ϑm sinϑm = 0. (36)

For convenience, we define the following two functions
which we will evaluate later on:

Λ1(ε) ≡ 1
M

M∑
m=1

r2
m

a2
cos2 ϑm =

1
M

M∑
m=1

r(ωm)2/a2

1 + tan2 ϑm

=
1
M

M∑
m=1

1− ε2 sin2 ωm

1 + (1− ε2) tan2 ωm
, (37)

Λ2(ε) ≡ 1
M

M∑
m=1

r2
m

a2
sin2 ϑm

=
1
M

M∑
m=1

(1− ε2 sin2 ωm)(1− ε2) tan2 ωm

1 + (1− ε2) tan2 ωm
.(38)

Then, the MLE of Θα is given by(
α̃1

α̃2

)
≈ 4

σ4
s

(
MΛ1(ε) 0

0 MΛ2(ε)

)−1

H̃T (Y −Y0)

=
1

2µa

(
Λ−1

1

∑
m ymrm cos ϑm

Λ−1
2

∑
m ymrm sinϑm

)
. (39)

The expectations and variances of α̃1,2 are

< α̃1 > =
σ2

sp

4µΛ1

∑
m

r2
m

a2
cos ϑm cos(ϑm − φ) = α1,

< α̃2 > =
σ2

sp

4µΛ2

∑
m

r2
m

a2
sinϑm cos(ϑm − φ) = α2,

σ2eα1
(ε) =

σ2
s

4µ2Λ2
1

∑
m

r2
m

a2
cos2 ϑm =

1
µΛ1(ε)

,

σ2eα2
(ε) =

σ2
s

4µ2Λ2
2

∑
m

r2
m

a2
sin2 ϑm =

1
µΛ2(ε)

.

One can also check that their covariance Cov[α̃1, α̃2] = 0.
Next, we evaluate Λ1,2(ε). Each sector has an arc

length equal to L/M , where L = 4aE(ε) is the circum-
ference of the ellipse and E(ε) =

∫ π/2

0

√
1− (ε sinω)2dω

is the complete elliptic integral of the second kind. The
arc length of the ellipse between ϑ = 0 and ϑ = ϑ(ω0)
is given by s(ω0) =

∫ ω0

0

√
(a sinω)2 + (b cos ω)2dω =∫ ω0

0
a
√

1− (ε sinω)2dω. Then, ds = a
√

1− (ε sinω)2dω.
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For sufficiently large M , we can approximate:

1
M

M∑
m=1

g(ωm) ≈
∫ L

0

g(ω)
L

ds(ω)

=
1

4E(ε)

∫ 2π

0

g(ω)
√

1− (ε sinω)2dω. (40)

where g(·) represents a general integrable function.
Therefore, we have

Λ1(ε) ≈ 1
4E(ε)

∫ 2π

0

(1− ε2 sin2 ω)3/2

1 + (1− ε2) tan2 ω
dω

=
(1 + ε2)E(ε)− (1− ε2)K(ε)

3ε2E(ε)
, (41)

where K(ε) =
∫ π/2

0
dω√

1−(ε sin ω)2
is the complete elliptic

integral of the first kind. Similarly, one can find

Λ2(ε) ≈
(1− ε2)

[
(−1 + 2ε2)E(ε) + (1− ε2)K(ε)

]
3ε2E(ε)

.

(42)
Since Λ1,2(ε = 0) = 1/2, we have σ2eα1,2

(ε = 0) = 2/µ,
consistent with Eq. (8). Therefore, α̃1,2 → α̂1,2 as the
cell shape tends to be circular. In the other extreme, we
have limε→1 Λ1(ε) = 2/3 and limε→1 Λ2(ε) = 0.

The MLE of Θ = (p, φ)T can be found directly,

Θ̃mle =
(

p̃

φ̃

)
=

( √
α̃2

1 + α̃2
2

arctan(α̃2/α̃1)

)
d−→ N

(
Θ, Ĩ(Θ)−1

)
,

(43)
where the last line is due to the asymptotic normality
of MLE: as the sample size increases, the distribution of
the MLE tends to the Gaussian distribution with mean Θ
and covariance matrix equal to the inverse of the Fisher
information matrix,

Ĩ(Θ)−1 =
〈

∂ lnP (Y|Θ)
∂Θi

∂ lnP (Y|Θ)
∂Θj

〉−1

≈ 1
µ

(
Ξ1(ε, φ) p · Ξ0(ε, φ)

p · Ξ0(ε, φ) p2 · Ξ2(ε, φ)

)−1

, (44)

where

Ξ0(ε, φ) ≡ 1
M

M∑
m=1

r2
m

a2
cos(ϑm − φ) sin(ϑm − φ),(45)

Ξ1(ε, φ) ≡ 1
M

M∑
m=1

r2
m

a2
cos2(ϑm − φ), (46)

Ξ2(ε, φ) ≡ 1
M

M∑
m=1

r2
m

a2
sin2(ϑm − φ). (47)

Again, one can use Eq. (40) to calculate the above three
functions. Here, we will skip all the intermediate techni-

cal steps and will only present the final results:

σ2ep(ε, φ) =
µ−1Ξ2(ε, φ)

Ξ1(ε, φ)Ξ2(ε, φ)− Ξ0(ε, φ)2

=
1
µ
· A1(ε) [A2(ε, φ)−A3(ε, φ)]

A6(ε) + A7(ε) + A8(ε)
, (48)

σ2eφ(ε, φ) =
(µp2)−1Ξ1(ε, φ)

Ξ1(ε, φ)Ξ2(ε, φ)− Ξ0(ε, φ)2

=
√

1− ε2

µp2

A1(ε) [A4(ε, φ)−A5(ε, φ)]
A6(ε) + A7(ε) + A8(ε)

,(49)

where

A1 = 3ε2E(ε)/[2(1− ε2)],
A2 = 2E(ε)[(2ε2 − ε4)− (1− ε2 + ε4) cos(2φ)],
A3 = (1− ε2)[ε2 − (2− ε2) cos(2φ)]K(ε),
A4 = 2E(ε)[(2ε2 − ε4) + (1− ε2 + ε4) cos(2φ)],
A5 = (1− ε2)[ε2 + (2− ε2) cos(2φ)]K(ε),
A6 = (−1 + ε2 + 2ε4)E(ε)2,
A7 = (2− 3ε2 + ε4)E(ε)K(ε),
A8 = −(1− ε2)2K(ε)2.

It is easy to check that σ2ep(0, φ) = 2/µ and σ2eφ(0, φ) =

2/(µp2), consistent with our results for the circular cell
(Eqns. 13, 14). Also, we find that the covariance of p̃

and φ̃ can be written as Cov[p̃, φ̃] = A0(ε) sin(2φ), which
vanishes at φ = 0,±π,±π/2. For the special case φ = 0,
Eq. (48) reduces to σ2ep(ε, 0) = [µΛ1(ε)]−1. As b → 0
such that ε → 1, the ellipse becomes a one-dimensional
segment of length 2a, which can measure the gradient
steepness with an accuracy σ2ep(ε → 1, φ = 0) = 3/(2µ).

To determine how the eccentricity affects the accuracy
of gradient estimates and to compare with our results for
the circular cell, we fix the area of the elliptical cell, i.e.,
let S ≡ πab = πa2/

√
1− ε2 be constant. We also keep

the gradient profile identical by fixing p0 ≡ |~∇C|/C0.
Then, the gradient is proportional to the major axis: p =
2ap0 = p(a). These assumptions allow us to define the
following ratios as a measure how the eccentricity will
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FIG. 2: (Color online). ∆p and ∆φ as a function of the eccentricity ε for different values of φ (lines: analytical expressions;
symbols: Monte-Carlo simulations).

change the gradient sensing limits:

∆p(ε, φ) ≡
σ2ep(ε, φ)/p(a)2

σ2ep(0, φ)/p(
√

S/π)2
=

µS

2πa2
σ2ep(ε, φ)

=
√

1− ε2

2
A1(ε) [A2(ε, φ)−A3(ε, φ)]

A6(ε) + A7(ε) + A8(ε)

=

{
(2Λ1)−1

√
1− ε2 for φ = 0,

(2Λ2)−1
√

1− ε2 for φ = ±π/2,
(50)

∆φ(ε, φ) ≡
σ2eφ(ε, φ)

σ2eφ(0, φ)
=

µp2

2
σ2eφ(ε, φ)

=
√

1− ε2

2
A1(ε) [A4(ε, φ)−A5(ε, φ)]

A6(ε) + A7(ε) + A8(ε)

=

{
(2Λ2)−1

√
1− ε2 for φ = 0,

(2Λ1)−1
√

1− ε2 for φ = ±π/2,
(51)

with Λ1(ε) and Λ2(ε) given by Eq. (41) and Eq. (42).
In Fig. 2 we have plotted, as solid and dashed lines,

these ratios for different values of φ (the gradient direc-
tion measured from the major axis). In the same fig-
ure, we have also plotted as symbols the results of our
Monte-Carlo simulations. In these simulations, the el-
lipse of a given eccentricity ε was divided into M = 1000
sectors with equal arc lengths. Each sector contained
Ns = 40 receptors and the receptor occupancy num-
ber for each sector, ym, was assigned a Gaussian ran-
dom variable with mean NsCm/(Cm + Kd) and vari-
ance NsCmKd/(Cm+Kd)2. After plugging these random
numbers into Eq. (39) and Eq. (43) for 104 realizations,
we computed the numerical values for the sample vari-
ances of p̃ and φ̃. As shown in the figure, the agreement
between our analytical and numerical results is excellent.

In the case where the gradient direction points along
the major axis of the elliptical cell (φ = 0 and Fig. 2A),
we see that ∆p is a decreasing function of the eccentricity
ε. This can be intuitively understood by realizing that

for an elongated cell pointing in the gradient direction,
the difference in concentration, and thus the difference
in occupied receptors between the back and front sec-
tors becomes large. Therefore, the more elongated the
cell is along the gradient direction, the more accurately
the cell is able to measure the gradient steepness. In
contrast, ∆φ increases with ε such that more elongated
cells are less accurate in estimating the gradient direc-
tion than circular cells. When the external gradient is
parallel to the cell’s minor axis (φ = ±π/2 and Fig. 2C),
we have exactly the opposite: ∆p increases with ε while
∆φ decreases with ε. Finally, for the intermediate case
φ = ±π/4 (Fig. 2B), we have ∆p = ∆φ and they both
increase with ε. Depending on the gradient angle φ, the
ratios can be even non-monotonic with ε; for example,
∆p at φ = π/6 will first decrease and then increase with
ε (data not shown).

It is noteworthy that gradient sensing generally fails
in the line segment limit (ε → 1), except for the spe-
cial cases of steepness sensing at φ = 0,±π and direc-
tion sensing at φ = ±π/2. As a vector, the concen-
tration gradient can be decomposed into two orthogo-
nal components, one along the major axis of the cell
pmajor = p cos φ and the other along the minor axis
pminor = p sinφ. When sensing the gradient magnitude
(steepness), the line-segment cell is only able to detect
the magnitude of pmajor. But there is unlimited uncer-
tainty in the other component pminor (except for vanish-
ing pminor at φ = 0 or ±π). This explains why ∆p always
diverges as ε → 1 except for φ = 0 and ±π. Similar ar-
guments hold for directional sensing: a line-segment cell
can only tell the direction of the gradient component per-
pendicular to itself (i.e., pminor) but has unlimited uncer-
tainty about pmajor which disappears only for φ = ±π/2.

Our analytical and numerical results reveal that, for
every gradient direction φ, a cell cannot improve the gra-
dient steepness and direction estimates simultaneously
by elongating its cell body. It is difficult to connect this
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result to the experimental measurements of the accuracy
of chemotaxis. This is mostly done in the form of the
chemotactic index (CI), defined as the distance traveled
by the cell in the direction of the gradient divided by
the total distance traveled. Clearly, the CI is a function
of both the accuracy in gradient steepness and gradient
direction. To determine the relative importance of these
two parameters would require a precise knowledge of the
gradient sensing and cell motility process, both of which
are currently absent.

Even in the absence of such precise knowledge, how-
ever, we can conclude that elongated cell shapes can
strongly affect the cell’s accuracy of gradient sensing.
In experiments, the cell shape varies depending on the
precise conditions. Chemotactic neutrophils, for exam-
ple, are found to have eccentricities up to 0.8 [29, 30].
For these values, we find that the variances of estimat-
ing gradient steepness and direction in the elliptical cells
differ by a factor of 2 compared to the ones in circular
cells. Furthermore, Dictyostelium cells can have much
higher eccentricities (ε ≈ 0.95) [31]. Such highly ellip-
tical geometries are expected to have even more signifi-
cant effects on the accuracy of gradient sensing. Thus,
the sensing limits derived using a circular geometry are
a good approximation only for cells that are not signifi-
cantly elongated.

IV. DIRECTIONAL SENSING IN THE
PRESENCE OF AN INTRACELLULAR BIAS

A large number of experiments have revealed that an
external cue can induce spatial localization of several sig-
naling proteins along the plasma membrane during eu-
karyotic directional sensing [7, 10, 32]. The membrane
localization of these signaling molecules enables a cell
to polarize and migrate toward the external chemical
source. Samadani et. al. have quantitatively monitored
the spatial and temporal localization of one of the key
signaling component fused to GFP [33]. Their data pro-
vides evidence for inherent asymmetries in the intracel-
lular signaling network of cells prior to stimulation. The
magnitude of this asymmetry was found to vary signifi-
cantly from cell to cell. This naturally raises the ques-
tion: what is the accuracy of directional sensing in the
presence of such an intracellular bias?

To address this question, we can use a nonuniform prior
distribution P (φ) to represent this internal bias and ap-
ply the maximum a posteriori (MAP) estimation. Specif-
ically, we assume that the prior distribution follows the
circular normal (CN) distribution in directional statis-
tics, P (φ) = exp[κε cos(φ − φε)]/(2πI0(κε)), where φε

denotes the bias direction, κε controls the magnitude of
the bias, and I0(·) is the modified Bessel function of order
zero. We have plotted the CN distribution in Fig. 3A for
various values of κε.

The MAP estimate of φ is

φ̂map = arg max
φ

P (Y|φ)P (φ)

= arg min
φ

[
1

2σ2
s

J(Y|Θ)− κε cos(φ− φε)
]

= arctan
( ∑

m ym sinϑm + γ sinφε∑
m ym cos ϑm + γ cos φε

)
= arctan

(
z1 + γ sinφε

z2 + γ cos φε

)
, (52)

with γ ≡ 2κε/p. This expression is similar to the maxi-
mal polarization angle derived from the geometric model
in [33]. In the limit κε → 0, the prior distribution be-
comes uniform and the MAP estimate recovers the MLE
of the gradient direction, i.e., φ̂map → φ̂. In the other
extreme that κε → ∞, the prior distribution becomes a
delta function and φ̂map → φε. Let z̃1 ≡ z1 + γ cos φε

and z̃2 ≡ z2 + γ sinφε. Then, by Eq. (10), they are in-
dependent and both normal: z̃1 ∼ N (α1 + γ cos φε, σ

2)
and z̃2 ∼ N (α2 + γ sinφε, σ

2). If we define Z̃ = z̃1 + iz̃2,
then Z̃ follows the complex Gaussian distribution and its
phase variable is just the MAP estimator, i.e., φ̂map =
arctan(z̃2/z̃1). As demonstrated in [25, 26], the phase
of a complex Gaussian random variable has a distribu-
tion symmetric about the expected value of the phase.
In our case, this implies that the MAP estimator φ̂map is
symmetrically distributed about its mean

〈φ̂map〉 = arctan
〈z̃2〉
〈z̃1〉

= arctan
(

µp cos φ + γ cos φε

µp sinφ + γ sinφε

)
≈

{
φε if κε � κ,

φ if κε � κ.
(53)

One can see that the value of 〈φ̂map〉 is largely determined
by the ratio γ/(µp) = 2κε/(µp2) = κε/κ, where κ is the
signal-to-noise ratio defined in Eq. (12).

In statistics, the bias function of an estimator is the
difference between this estimator’s expected value and
the true value of the parameter being estimated. In our
case, the bias function of the MAP estimator is

bmap(φ) ≡ 〈φ̂map〉−φ = arctan
(

κ sinφ + κε sinφε

κ cos φ + κε cos φε

)
−φ.

(54)
Obviously, φ̂map is a biased estimator of φ due to bias in
P (φ). The squared estimation error of φ̂map is

σ2
φ,map = 〈(φ̂map − φ)2〉

= 〈(φ̂map − 〈φ̂map〉+ 〈φ̂map〉 − φ)2〉
= 〈(φ̂map − 〈φ̂map〉)2〉+ bmap(φ)2. (55)

According to the Cramér-Rao inequality for biased esti-
mators [34] the first term is bounded by

〈(φ̂map − 〈φ̂map〉)2〉 ≥
(

1 +
∂bmap(φ)

∂φ

)2

I−1
φ , (56)
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BA

FIG. 3: (Color online). A: The circular normal distribution
for different values of κε. B: The lower bound on the variance
in gradient sensing σ2

φ,map as a function of the direction of
the bias φε (relative to the gradient direction) for different
values of the strength of the bias κε. Parameter values are
N = 40, 000 and C0 = Kd, resulting in a SNR of κ = 12.5.

where the Fisher information has been calculated before,
Iφ =

〈
(∂φ lnL)2

〉
= σ−2

φ = µp2/2 = κ. Therefore,

σ2
φ,map ≥

(
1 +

∂bmap(φ)
∂φ

)2

I−1
φ + bmap(φ)2

= κ

[
κ + κε cos(φ− φε)

κ2 + 2κκε cos(φ− φε) + κ2
ε

]2

+
[
arctan

(
κ sinφ + κε sinφε

κ cos φ + κε cos φε

)
− φ

]2

=

{
κ/(κ + κε)2 if φε = φ,

κ/(κ− κε)2 if φε = φ± π.
(57)

In Fig. 3B we have plotted the lower bound of σφ,map

as a function of the direction of the bias φε for different
values of the bias strength κε. As expected, directional
sensing is most accurate when the intracellular bias di-
rection coincides with the extracellular gradient direc-
tion (φε = φ) and becomes less accurate it differs sig-
nificantly from the gradient direction. This is consistent
with the experimental findings in [33] which showed that

the GFP polarization is strongest at φε = φ and weaker
at φε = φ±π. Of course, we have chosen a fixed value for
the parameter κε, corresponding to a single cell. To deal
with a population averaged as in typical experiments,
one would have to assign a probability distribution to κε

(arising from cell individuality). This quenched random-
ness is expected to enlarge the cell-to-cell variability of
directional sensing response, as observed in [33].

V. SUMMARY

In this paper we have used various concepts and tech-
niques in estimation theory to investigate the physical
limits of eukaryotic gradient sensing. We have derived
explicit formulas for the variances of estimating both the
gradient direction and steepness for an elliptical cell. Our
theoretical and numerical results suggest that a cell can-
not improve its sensing of both the gradient steepness and
direction at the same time by simply elongating itself.
We also show that highly eccentric cell shapes can sig-
nificantly change the gradient sensing limits, which may
be relevant in experimental observations for chemotactic
eukaryotes like neutrophils and Dictyostelium. Finally,
we examined how an intracellular bias may distort the
cell’s perception of external stimuli. As expected, the
accuracy of gradient detection increases when the inter-
nal bias aligned with the external gradient but decreases
when the direction of the internal bias is significantly dif-
ferent from the external gradient direction. Our approach
is general and in principle can be extended to cases in-
cluding non-uniformly distributed receptors or more com-
plicated cell shapes.
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