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Self-organization in systems of self-propelled particles
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We investigate a discrete model consisting of self-propelled particles that obey simple interaction rules. We
show that this model can self-organize and exhibit coherent localized solutions in one- and in two-dimensions.
In one-dimension, the self-organized solution is a localized flock of finite extent in which the density abruptly
drops to zero at the edges. In two-dimensions, we focus on the vortex solution in which the particles rotate
around a common center and show that this solution can be obtained from random initial conditions, even in
the absence of a confining boundary. Furthermore, we develop a continuum version of our discrete model and
demonstrate that the agreement between the discrete and the continuum model is excellent.
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Self-organization and pattern formation in systems ofby an interaction rangk,. This force is responsible for the
self-propelled entities are ubiquitous in nature. Examples caaggregation of the particles. To prevent a collapse of the
be found in a variety of fields and include animal aggrega-aggregate, a shorter-range repulsive force is introduced with
tion [1], traffic patterns[2] and cell migratior{3]. Recently, interaction rangé, . Thus, the governing equations for each
the problem of flocking, in which a large number of moving particle is
particles(e.qg., fish or birdsremain coherent over long times

and distances, has attracted considerable attefiignA m;dw; = afj—Bv;—VU, (1)
simulation of a simple numerical model by Vicsekal. [5] .
in which each particle has a constant identical speed and a IX =V . 2

direction of motion that is determined by the average direc- . .
tion of its neighbors, revealed that an ordered phase exist¥ve have checked that our qualitative results are independent

even in the presence of noise and disorder. A subsequeﬂLthe explicit form of the !nteractlon.potgntlal af‘d yve have
. . . . chosen here an exponentially decaying interaction:
analysis of a continuum model by Toner and [Bl investi-
gated this ordered phase further and derived conditions for . .
its stability. U=, Caexp—|xi—xj|/l)— > Crexp—|x—x|/l,),
These models have in common that the flocks have infi- /7" 1%
. e . X ) ; 3
nite extent and, in simulations, fill the entire computational

box. In reality, however, flocks have a finite Size, with its where Ca, Cr determine the Strength of the attractive and
density dropping sharply at the edge of the flgzk In this  repulsive force, respectively. The direction of the self-
Brief Report we present a discrete model consisting of selfpropelling force can be chosen along the instantaneous ve-
propelled interacting particles that obey simple rules. Weocity vector or, similar to the numerical model of RgS],
show that self-organization in our model leads to coherentan be determined by aligning it with the average velocity
localized states in one dimensiofiD) and in two dimen- direction of the neighboring particles:

sions(2D) that are stable in the presence of noise and disor-

der. Furthermore, we present a continuum version of our %i:{,i without averaging, (4
discrete model which is obtained by coarse-grain averaging

the discrete equations. The continuum flock solutions in 1D N N .

agree very well with the discrete solutions and are character-  fi=2, vjexp(—|xi—xj|/lc) with averaging, (5
ized by having a finite extent with densities that drop off 17

sharply at the edges. In 2D, we focus on a vortex state i herel, is a correlation length.

which the particles are rotating around a common center an Let us now present our simulation results of the discrete

show that the discrete model and the continuum model agre ;4el. The model was integrated by solving Ed3.and (2)
well . . . : . using a simple Euler integration routine with timest&p
Our discrete particle model consists Nfparticles with  _q 5 The simplest coherehtcalizedsolution in our model
massm; , positionx; and velocityv;. Each particle experi- s a 1D flock in which all particles move with constant ve-
ences a self-propelling forcg with fixed magnitudex. To  locity v=a/B. An example of this solution is presented in
prevent the particles from reaching large speeds, a frictiorig. 1 where we have plotted, as solid circles, the density
force with coefficientB is introduced. In addition, each par- defined asp;=2/(x(i+1)—x(i—1)) as a function of the
ticle is subject to an attractive force which is characterizecposition of the particle. The density can be seen to drop
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05 . - , hard-core repulsive forces. In fact, a flock with a size that
scales approximately linearly with the total number of par-
ticles can be obtained by introducing a hard-core repulsive

041 force in Eq.(1) [8]. The specific form of the hard-core po-
tential is not important and we have chosen

03 |

<
= Une= 2, ChelIXi—xi|=1h0)%  [xi—Xj|<Ihe,
0.2} « Discrete model 17
Continuum model (6)
Uhc=0, |Xi_xj|>|hC'

01 |
In Fig. 2 we show, as a solid line, the size of the flock in the

0.0 presence of this additional repulsive force as a functioN of

-2 -1 0 1 2 while in the inset we show the corresponding density of the
x/ flock for differentN. Naturally, the force has only an effect
when the interparticle separations are smaller thgn
FIG. 1. Acoherent moving rock_in the (_)ne-dime_nsional version Hence, for smallN the flock solution is unaffected by the
of the model with parameter@ll with arbitrary units m=1, «  qgitional force. AN is increased and the interparticle spac-
=05,5=1,C,=0.45,1,=60,C,=2, and|, =20. The solid circles 4 phocomes smaller thdp,, the particles in the center of

correspond to the solution of the discrete model fb+200 and
every 10th particle displayed. The solid line shows the solution otIhe flock are p_ush_ed_apart. For Iarge_the .ﬂOCk reachgs a

! constant density in its center and its size scales linearly
the continuum model. with N

Let us now turn to 2D where we have obtained several
abruptly to zero at the edge of the flock. We have checkegiocking states. One, not shown here, is the equivalent of our
that this solution is stable in the presence of moderatqp fiock: all particles are moving in the same direction with
amountf of nois¢added to Eq(2)] and of disorder in the |Ji|=a/ﬁ. The particles arrange themselves on a disk and
parameters. this aggregate is stable under small amounts of noise and

Further simulations revealed that increasing the numbeJiisorder. The solution which we will focus on here consists

of particles does not change the shape of the density functio& a vortex state where the particles rotate around a common
and that the total size of the flock reaches a constant valu

This is illustrated in Fig. 2 where the dashed line represent%glrgre“re:[q%]W;r:?jhaﬁ]ozobn;rgggr;ré;%g]sgmfﬁ;élggg;eggls
the_ size .Of the flock as afunctio_n of the number_of partiCIeSbeen obser'ved previously in model.s of self-propelling
This obviously u_nreallst|c beh.awor of the model is due to theparticles but only in the presence of a confining
soft-core repulsive force which allows the particles to beboundary[lz 13 or when a rotational chemotaxis term is
very close. Our model can easily be extended to incorporatﬁvoked[lo]_ '
In our model, the vortex solution can be obtained from a
20 wide variety of initial conditions including one in which all
particles are randomly placed on a disk with spe¢g@ and
random initial velocities. A typical evolution of the particles
115 starting from this initial condition is shown in Fig. 3. This
figure was obtained in the absence of the velocity averaging
term and illustrates that in this case some particles move
clockwise while the others rotate counter clockwise. When
o the velocity averaging term is included the final vortex state
consists of all particles turning the same way. An example of
this case is shown in the inset of Fig. 4. In both cases, the

a

160 40 20 80

15 speed of each particle was found to be sharply peaked around
. . lv|=alp.
N w::::r;;;’r"’t‘f?;;”:’e':':l’;ion The average size of the vortex remains constant in time as
. . . 0 shown in Fig. 4 where we have plotted the average density
0 40 80 120 160 (obtained by averaging over 4Gterationg of the vortex
N structure. Figure 4 displays several remarkable features.

FIG. 2. The size of a flock as a function o with (solid line) First, there is a well-defined core which remains void even
and without(dashed ling an additional short-range hard-core po- for extended simulation runs. Using different parameter val-
tential. The inset shows the density of flocks in the presence of thé/€S however, one can also produce a vortex without a core.
short-range hard-core potential for differedt Parameter values: Second, as in the one-dimensional flock, the density does not
m=1, «=0.5,8=1,C,=0.6,1,=40,C,=2,1,=20,C,.=1,and  decay smoothly to zero at the edges. Instead, it increases at
Ihe=10. both the inner and outer edge of the aggregate and then drops
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after dividing by a common factor qf,

A L, du+w-Vv=af-pu+G @)
4%"% 3 o+ (0-V)o=al-p
,:f iﬁ;{ \ together with the conservation equation for the dengity
’i‘f" 57 L dp+V-(0p)=0
L F . = .
g o
The interaction force is given by
N d é(i)zf p(X")VU(X,X")dx’ (8)
A ISR .
2 l/ i-:ﬁ\ *fx”%f::{ *‘:{ » and the self-propulsive force direction is given by either
15 /f;‘fﬁ{ 5 b,
(@ } v SN oo o
‘A - ’;zw i f<x>=f p(X)o (X exp(— [X—x'|lgdx’ (9)
W Sy d
e CEEET o vest ave R
-3 _‘.‘;‘Q’ T e in the velocity averaging case or simply by=v/|v| other-
A+ - wise.

A comparison between the discrete model and the con-
FIG. 3. Snapshots dfl=200 particles for the parameter values tinuum model can be carried out for the solutions presented
a=10,=1,1.=0, C,=04,1,=40,C,=1, andl,=20. As initial  here. For a 1D flock, we have simply=1, and the solution
condition, the particles are placed at random on a disk with velociin the continuum model is given b§=0 or
ties that are constant in magnitude/3) but random in direction
(a). After an initial transienf(b) 20 iterations andc) 50 iterations,
a stable rotating vortex state is formgd) 300 iterationg The bar f p(Xx")HU(x,x")dx" =D, (10
indicates the attraction lengih. The position of each particle is
denoted by a solid circle and the velocity as a line starting at thevhereD is a constant determining the total number of par-
particle and pointing in the direction of the velocity. ticles. Since the sought after solution has a finite extent with
a discontinuity at the edge where the density drops to zero
abruptly. Qualitatively similar vortex solutions were found we discretize the integral using points and discretization
when an additional hard-core repulsion like the one disstepAx. The last point corresponds to the edge of the flock.
cussed above is added. The resulting linear set d¥l equations fop is easily solved
As in the case of traffic modelsl4], it is useful to de- uysing standard linear algebra packages, Axdwas varied
velop a continuum version of our model. To this end, weyntil the slope at the center of the flock vanished. The resuilt,
simply coarse-grain average the equations which results inith D chosen such thatp(x)dx=N, is shown in Fig. 1 as
a solid line. The density profile in the continuum model is

120 discontinuous at the edge and agrees well with the profile
obtained in the discrete model. Note that since the equations
100 | are linear inp it is not surprising to find that the density
profile of the discrete model did not change as the number of
80 - particles is increased. Clearly, the simple coarse-grained av-
eraging procedure is not adequate for the hard-core potential
%o gk case, where higher order terms in the density are important.
< The continuum model can also be used to find the vortex
w0l solution. To this end, we use the fact that all particles un-
dergo approximately a circular motion with constant speed
. (a/B). Thus, a continuum vortex solution can be found by
or g:f{;heu:’fr:ihel requiring that the forc& is centripetal:
, , 2 %
°] 2 ] 3 4 JO dquOdr’p(r’)U(r,r’,¢)=D—(a/,8)2In(r).
.

11
FIG. 4. Average density of a rotating vortex state in the discrete . . . o

model (solid symbol$ and the continuum model for the parameter After performing the integration ovep, the remaining inte-
valuesN=400, m=1, =10, 8=1, I.=0, C,=0.5, 1,=30, C, gral was discretized as in the 1D case. The resulting matrix
=1, andl,=20. The inset shows a snapshot of the discrete modeyvas solved forp(r) and used in a Newton solver that
simulation with the bar correspondingltp. As initial condition we ~ searched for the size of the hole and the overall size of the
used a vortex obtained with=4 which ensured that the angular vortex (i.e., discretizatiom\x) with a condition for smooth-
velocity of all particles has the same sign. ness of the solution at both discontinuous edges. This condi-
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200 , , ' exploration is shown in Fig. 5 where we plot two different
150 D=1037 | Bl ] solutions found by our Newton solver for the same model
Y @ 100 ] o9 parameters and total number of particlés<200) but with
< 50 1 %5 \/\ different integration constarid. Preliminary simulations of
D=683 the discrete model show that the solution with the larger core
0 1 2 5 3 4 5 is unstable and a formal stability analysis of the continuum
h, t/l solution will be carried out in the future.

a

In this Brief Report we have presented a model for local-
FIG. 5. Two different solutions of the continuum model for the ized aggregates and flocks. Our model contains very simple
parametersy/ 3=10C,=0.7),=40C,=2],=20, andN=200. rules and can be straightforwardly extended to incorporate
additional and different types of interactions. For example,

tion simply consisted of requiring that the first and last poin'[i)hee Sfﬁ;crisratga; rgg;]néz:gnb?gsgsl tggg{ﬁgﬁﬁﬁha;e sbhecl)lr?}/rzi tg
can be obtained by linear interpolation from its two neigh_hard—core regulsion The investi atgilon of these tvpes of inq
boring points. We have checked that the solutions we ob: P . 9 yp

tained are converged by increasing the number of discretizé{-erac'[IonS will be the subject of future work. Finally, it

tion points from 80 to 1480. In Fig. 4 we compare thewo;Jld be intlerestinrg]; to compare our results t? animal floglgls.

discrete solution to the one obtained by Efl) where the Unfortunately, such a comparison is currently not possible

_ i . R _ since not enough quantitative data is available.

integration constarld was varied untilf p(x)dx=N. Again,

the continuum profile is discontinuous at the edges and the We acknowledge useful conversations with E. Ben-Jacob

agreement between the continuum profile and the discretend W.F. Loomis. The work of H.L. and W.J.R. was sup-

profile is very good. ported in part by NSF Grant No. DBI-95-12809. |.C. ac-
The continuum equation can be used to explorgldrge knowledges support from The Colton Scholarships and a

parameter space more efficiently. An example of such atsraeli-US Binational Science Foundation BSF grant.
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