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Self-organization in systems of self-propelled particles
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We investigate a discrete model consisting of self-propelled particles that obey simple interaction rules. We
show that this model can self-organize and exhibit coherent localized solutions in one- and in two-dimensions.
In one-dimension, the self-organized solution is a localized flock of finite extent in which the density abruptly
drops to zero at the edges. In two-dimensions, we focus on the vortex solution in which the particles rotate
around a common center and show that this solution can be obtained from random initial conditions, even in
the absence of a confining boundary. Furthermore, we develop a continuum version of our discrete model and
demonstrate that the agreement between the discrete and the continuum model is excellent.
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Self-organization and pattern formation in systems
self-propelled entities are ubiquitous in nature. Examples
be found in a variety of fields and include animal aggre
tion @1#, traffic patterns,@2# and cell migration@3#. Recently,
the problem of flocking, in which a large number of movin
particles~e.g., fish or birds! remain coherent over long time
and distances, has attracted considerable attention@4#. A
simulation of a simple numerical model by Vicseket al. @5#
in which each particle has a constant identical speed an
direction of motion that is determined by the average dir
tion of its neighbors, revealed that an ordered phase ex
even in the presence of noise and disorder. A subseq
analysis of a continuum model by Toner and Tu@6# investi-
gated this ordered phase further and derived conditions
its stability.

These models have in common that the flocks have i
nite extent and, in simulations, fill the entire computation
box. In reality, however, flocks have a finite size, with
density dropping sharply at the edge of the flock@7#. In this
Brief Report we present a discrete model consisting of s
propelled interacting particles that obey simple rules. W
show that self-organization in our model leads to coher
localized states in one dimension~1D! and in two dimen-
sions~2D! that are stable in the presence of noise and dis
der. Furthermore, we present a continuum version of
discrete model which is obtained by coarse-grain averag
the discrete equations. The continuum flock solutions in
agree very well with the discrete solutions and are charac
ized by having a finite extent with densities that drop
sharply at the edges. In 2D, we focus on a vortex state
which the particles are rotating around a common center
show that the discrete model and the continuum model a
well.

Our discrete particle model consists ofN particles with
massmi , positionxW i and velocityvW i . Each particle experi-
ences a self-propelling forcefW i with fixed magnitudea. To
prevent the particles from reaching large speeds, a fric
force with coefficientb is introduced. In addition, each pa
ticle is subject to an attractive force which is characteriz
1063-651X/2000/63~1!/017101~4!/$15.00 63 0171
f
n
-

a
-
ts,
nt

or

-
l

f-
e
t

r-
r
g

D
r-

f
in
d

ee

n

d

by an interaction rangel a . This force is responsible for the
aggregation of the particles. To prevent a collapse of
aggregate, a shorter-range repulsive force is introduced
interaction rangel r . Thus, the governing equations for ea
particle is

mi] tvW i5a f̂ i2bvW i2¹W U, ~1!

] txW i5vW i . ~2!

We have checked that our qualitative results are indepen
of the explicit form of the interaction potential and we ha
chosen here an exponentially decaying interaction:

U5(
j Þ i

Ca exp~2uxW i2xW j u/ l a!2(
j Þ i

Cr exp~2uxW i2xW j u/ l r !,

~3!

where Ca , Cr determine the strength of the attractive a
repulsive force, respectively. The direction of the se
propelling force can be chosen along the instantaneous
locity vector or, similar to the numerical model of Ref.@5#,
can be determined by aligning it with the average veloc
direction of the neighboring particles:

f̂ i5 v̂ i without averaging, ~4!

f̂ i5(
j Þ i

v̂ j exp~2uxW i2xW j u/ l c! with averaging, ~5!

wherel c is a correlation length.
Let us now present our simulation results of the discr

model. The model was integrated by solving Eqs.~1! and~2!
using a simple Euler integration routine with timestepDt
50.2. The simplest coherentlocalizedsolution in our model
is a 1D flock in which all particles move with constant v
locity v5a/b. An example of this solution is presented
Fig. 1 where we have plotted, as solid circles, the den
defined asr i52/(x( i 11)2x( i 21)) as a function of the
position of the particle. The density can be seen to d
©2000 The American Physical Society01-1
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abruptly to zero at the edge of the flock. We have chec
that this solution is stable in the presence of moder
amounts of noise@added to Eq.~2!# and of disorder in the
parameters.

Further simulations revealed that increasing the num
of particles does not change the shape of the density func
and that the total size of the flock reaches a constant va
This is illustrated in Fig. 2 where the dashed line represe
the size of the flock as a function of the number of particl
This obviously unrealistic behavior of the model is due to
soft-core repulsive force which allows the particles to
very close. Our model can easily be extended to incorpo

FIG. 1. A coherent moving flock in the one-dimensional vers
of the model with parameters~all with arbitrary units! m51, a
50.5,b51, Ca50.45, l a560,Cr52, andl r520. The solid circles
correspond to the solution of the discrete model forN5200 and
every 10th particle displayed. The solid line shows the solution
the continuum model.

FIG. 2. The sizeL of a flock as a function ofN with ~solid line!
and without~dashed line! an additional short-range hard-core p
tential. The inset shows the density of flocks in the presence of
short-range hard-core potential for differentN. Parameter values
m51, a50.5, b51, Ca50.6, l a540, Cr52, l r520, Chc51, and
l hc510.
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hard-core repulsive forces. In fact, a flock with a size th
scales approximately linearly with the total number of p
ticles can be obtained by introducing a hard-core repuls
force in Eq.~1! @8#. The specific form of the hard-core po
tential is not important and we have chosen

Uhc5(
j Þ i

Chc~ uxi2xj u2 l hc!
5, uxi2xj u< l hc,

~6!
Uhc50, uxi2xj u. l hc .

In Fig. 2 we show, as a solid line, the size of the flock in t
presence of this additional repulsive force as a function oN
while in the inset we show the corresponding density of
flock for differentN. Naturally, the force has only an effec
when the interparticle separations are smaller thanl hc .
Hence, for smallN the flock solution is unaffected by th
additional force. AsN is increased and the interparticle spa
ing becomes smaller thanl hc , the particles in the center o
the flock are pushed apart. For largeN, the flock reaches a
constant density in its center and its size scales line
with N.

Let us now turn to 2D where we have obtained seve
flocking states. One, not shown here, is the equivalent of
1D flock: all particles are moving in the same direction w
uvW i u5a/b. The particles arrange themselves on a disk a
this aggregate is stable under small amounts of noise
disorder. The solution which we will focus on here consi
of a vortex state where the particles rotate around a comm
center and which is common in fish schools@9#, bacterial
colonies@10#, and amoeba aggregates@11#. This solution has
been observed previously in models of self-propelli
particles but only in the presence of a confinin
boundary@12,13# or when a rotational chemotaxis term
invoked @10#.

In our model, the vortex solution can be obtained from
wide variety of initial conditions including one in which a
particles are randomly placed on a disk with speeda/b and
random initial velocities. A typical evolution of the particle
starting from this initial condition is shown in Fig. 3. Thi
figure was obtained in the absence of the velocity averag
term and illustrates that in this case some particles m
clockwise while the others rotate counter clockwise. Wh
the velocity averaging term is included the final vortex st
consists of all particles turning the same way. An example
this case is shown in the inset of Fig. 4. In both cases,
speed of each particle was found to be sharply peaked aro
uvW u5a/b.

The average size of the vortex remains constant in time
shown in Fig. 4 where we have plotted the average den
~obtained by averaging over 106 iterations! of the vortex
structure. Figure 4 displays several remarkable featu
First, there is a well-defined core which remains void ev
for extended simulation runs. Using different parameter v
ues however, one can also produce a vortex without a c
Second, as in the one-dimensional flock, the density does
decay smoothly to zero at the edges. Instead, it increase
both the inner and outer edge of the aggregate and then d
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BRIEF REPORTS PHYSICAL REVIEW E 63 017101
abruptly. Qualitatively similar vortex solutions were foun
when an additional hard-core repulsion like the one d
cussed above is added.

As in the case of traffic models@14#, it is useful to de-
velop a continuum version of our model. To this end,
simply coarse-grain average the equations which results

FIG. 3. Snapshots ofN5200 particles for the parameter value
a510, b51, l c50, Ca50.4, l a540, Cr51, andl r520. As initial
condition, the particles are placed at random on a disk with vel
ties that are constant in magnitude (a/b) but random in direction
~a!. After an initial transient@~b! 20 iterations and~c! 50 iterations#,
a stable rotating vortex state is formed@~d! 300 iterations#. The bar
indicates the attraction lengthl a . The position of each particle is
denoted by a solid circle and the velocity as a line starting at
particle and pointing in the direction of the velocity.

FIG. 4. Average density of a rotating vortex state in the discr
model ~solid symbols! and the continuum model for the paramet
valuesN5400, m51, a510, b51, l c50, Ca50.5, l a530, Cr

51, andl r520. The inset shows a snapshot of the discrete mo
simulation with the bar corresponding tol a . As initial condition we
used a vortex obtained withl c54 which ensured that the angula
velocity of all particles has the same sign.
01710
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after dividing by a common factor ofr,

] tvW 1~vW •¹W !vW 5a f̂ 2bvW 1GW ~7!

together with the conservation equation for the densityr

] tr1¹W •~vW r!50.

The interaction force is given by

GW ~xW !5E r~xW8!¹W U~xW ,xW8!dxW8 ~8!

and the self-propulsive force direction is given by either

f̂ ~xW !5E r~xW8!v̂~xW8!exp~2uxW2xW8u/ l d!dxW8 ~9!

in the velocity averaging case or simply byf̂ 5vW /uvW u other-
wise.

A comparison between the discrete model and the c
tinuum model can be carried out for the solutions presen
here. For a 1D flock, we have simplyf̂ i51, and the solution
in the continuum model is given byG50 or

E r~x8!U~x,x8!dx85D, ~10!

whereD is a constant determining the total number of p
ticles. Since the sought after solution has a finite extent w
a discontinuity at the edge where the density drops to z
we discretize the integral usingM points and discretization
stepDx. The last point corresponds to the edge of the flo
The resulting linear set ofM equations forr is easily solved
using standard linear algebra packages, andDx was varied
until the slope at the center of the flock vanished. The res
with D chosen such that*r(x)dx5N, is shown in Fig. 1 as
a solid line. The density profile in the continuum model
discontinuous at the edge and agrees well with the pro
obtained in the discrete model. Note that since the equat
are linear inr it is not surprising to find that the densit
profile of the discrete model did not change as the numbe
particles is increased. Clearly, the simple coarse-grained
eraging procedure is not adequate for the hard-core pote
case, where higher order terms in the density are import

The continuum model can also be used to find the vor
solution. To this end, we use the fact that all particles u
dergo approximately a circular motion with constant spe
(a/b). Thus, a continuum vortex solution can be found
requiring that the forceGW is centripetal:

E
0

2p

dfE
0

`

dr8 r~r 8!U~r ,r 8,f!5D2~a/b!2 ln~r !.

~11!

After performing the integration overf, the remaining inte-
gral was discretized as in the 1D case. The resulting ma
was solved forr(r ) and used in a Newton solver tha
searched for the size of the hole and the overall size of
vortex ~i.e., discretizationDx) with a condition for smooth-
ness of the solution at both discontinuous edges. This co
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BRIEF REPORTS PHYSICAL REVIEW E 63 017101
tion simply consisted of requiring that the first and last po
can be obtained by linear interpolation from its two neig
boring points. We have checked that the solutions we
tained are converged by increasing the number of discre
tion points from 80 to 1480. In Fig. 4 we compare t
discrete solution to the one obtained by Eq.~11! where the
integration constantD was varied until*r(xW )dxW5N. Again,
the continuum profile is discontinuous at the edges and
agreement between the continuum profile and the disc
profile is very good.

The continuum equation can be used to explore the~large!
parameter space more efficiently. An example of such

FIG. 5. Two different solutions of the continuum model for th
parametersa/b510,Ca50.7,l a540,Cr52,l r520, andN5200.
e,
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exploration is shown in Fig. 5 where we plot two differe
solutions found by our Newton solver for the same mo
parameters and total number of particles (N5200) but with
different integration constantD. Preliminary simulations of
the discrete model show that the solution with the larger c
is unstable and a formal stability analysis of the continu
solution will be carried out in the future.

In this Brief Report we have presented a model for loc
ized aggregates and flocks. Our model contains very sim
rules and can be straightforwardly extended to incorpor
additional and different types of interactions. For examp
the forces that maintain bacterial aggregates are believe
be short-range adhesion forces together with a short-ra
hard-core repulsion. The investigation of these types of
teractions will be the subject of future work. Finally,
would be interesting to compare our results to animal floc
Unfortunately, such a comparison is currently not possi
since not enough quantitative data is available.
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