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Abstract
Morphogens are proteins, often produced in a localized region, whose concentrations spatially
demarcate regions of differing gene expression in developing embryos. The boundaries of
gene expression are typically sharp and the genes can be viewed as abruptly switching from on
to off or vice versa upon crossing the boundary. To ensure the viability of the organism these
boundaries must be set at certain fractional positions within the corresponding developing
field. Remarkably this can be done with high precision despite the fact that the size of the
developing field itself can vary widely from embryo to embryo. How this scaling is
accomplished is unknown but it is clear that a single morphogen gradient is insufficient. Here
we show how a pair of morphogens A and B, produced at opposite ends of a one-dimensional
developing field, can solve the pattern-scaling problem. In the most promising scenario the
morphogens interact via an effective annihilation reaction A + B → ∅ and the switch occurs
according to the absolute concentration of A or B. We define a scaling criterion and show that
morphogens coupled in this way can set embryonic markers across the entire developing field
in proportion to the field size. This scaling occurs at developing-field sizes of a few times the
morphogen decay length. The scaling criterion is not met if instead the gradients couple
combinatorially such that downstream genes are regulated by the ratio A/B of the morphogen
concentrations.

1. Introduction

Morphogen gradients play a crucial role in establishing
patterns of gene expression during development. These
patterns then go on to determine the complex three-
dimensional morphology that is needed for organism
functionality. Because not all environmental variation can
be controlled, gene patterning must be robust to a variety of
perturbations, i.e. must compensate for the unpredictable [1].

One aspect of this robustness is size scaling. Typically,
gene patterns are established in proportion to the (variable)
size of the nascent embryo. A dramatic demonstration of
this was made recently in the case of Drosophila where
the posterior boundary of the hunchback gene expression
domain was shown to scale (to within 5%) with embryo
size [2]. In the standard model of pattern formation
in developmental biology, cells acquire their positional
information by measuring the concentration of a morphogen
gradient and comparing it to some hard-wired set of thresholds
[3–5]. As the simplest single-source diffusing morphogen

gradient with fixed thresholds clearly does not exhibit this
type of proportionality, it is clear that more sophisticated
dynamics must be responsible for the observed structures [6].
Unfortunately, little to nothing is known experimentally about
how this pattern scaling comes about.

As a first step in deciphering what these more complex
processes might entail, we study here the issue of how
two morphogen gradients, directed from opposite ends of a
developing field, may solve the pattern-scaling problem [3].
Operationally, opposing gradients may arise in developing
systems in at least two ways. First mRNA, from which
protein is translated, may be anchored at opposite ends of
the region in question. As an example, in the Drosophila
syncytium an anterior-to-posterior gradient is established by
the localization of bicoid mRNA to the anterior, while nanos
mRNA localized at the posterior defines a reciprocal gradient
[7]. Second, proteins may be secreted by clusters of cells with
separate clusters located at opposite ends of the developing
field [8]. Both cases may be modelled by the injection of
a flux of A and B morphogens at opposite extremities of a
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finite domain. We assume that creation of morphogens in
the interior of this domain is negligible. We further assume
that the morphogen reaches neighbouring cells by an effective
diffusion process, thereby creating a gradient [9, 10]. Finally,
although time-dependent effects in development patterning
might be important in some contexts [11, 12], we assume here
that a steady-state analysis is sufficient for scaling of patterns
with system size.

We consider two mechanisms in which a pair of
morphogen gradients transmits size information to the
developmental pattern. The first mechanism, which uses
the concentrations of both gradients combinatorially, is an
alternative to the simple gradient mechanism [13]. In this
mechanism there exist overlapping DNA-binding sites of
species A and B in the cis-regulatory modules of the target
genes. (We note that in the Drosophila syncytium some
krüppel binding sites overlap extensively with bicoid sites
[13, 14].) One of the morphogens acts as a transcriptional
activator, the second occludes the binding site of the first,
and the target gene expression is switched according to the
relative concentrations of the two species [15]. In the second
mechanism protein B inhibits the activity of transcription
factor A by irreversibly binding to it. The interaction is
described by the annihilation reaction A + B → ∅. The target
gene measures the absolute value of the A concentration as in
the standard model of developmental patterning; the B gradient
serves only to provide size information to the A concentration
field.

We should point out two independent studies that appeared
after the completion of our work.

In the first instance Howard and ten Wolde [16] examined
the bicoid-hunchback system in developing Drosophila
embryos. Their model is in essence the annihilation
mechanism mentioned above. They consider an activator
gradient originating from one end of the embryo and
hypothesize a co-repressor gradient originating from the
opposite end. The co-repressor can bind to the activator,
thereby inhibiting its transcriptional ability. They show that
their model naturally leads to expression boundaries that are
precisely at the centre of the embryo. Furthermore, they
demonstrate that this pattern scales with the embryo size and is
quite robust to variations in the synthesis rates of the activator
and co-repressor. Compared to the study presented here,
their model is biochemically more detailed and mathematically
more complex, although their results are quite general. The
relative simplicity of our model is its main strength, as it lends
itself to rigorous mathematical analysis.

In the second instance Houchmandzadeh and co-workers
[17] investigated the combinatorial mechanism mentioned
above, also in the context of the early Drosophila embryo.
The authors demonstrate that two morphogen gradients can
account for most of the experimental data. They consider
the effect of changing bicoid copy number and point out that
the resultant shift in the Hunchback boundary is twice as
small in the combinatorial model as it is in the single-gradient
model, thereby bringing the theoretical prediction into line
with the experimental data. Importantly they also show how a
combinatorial model can determine the midpoint of the embryo

reliably even in the presence of a temperature step centred
on the embryo, as recently demonstrated experimentally [18].
Their argument is based on the fact that a reduction in synthesis
rate due to a lowering of temperature is accompanied by an
increase in the diffusion length. These effects can cancel
at mid-embryo so that the numbers of A and B molecules
reaching the centre of the embryo are the same.

The goal of this work is to study the combinatorial and
annihilation mechanisms in their most general setting to see
the extent to which they do in fact solve the pattern scaling
problem. To this end we measure the range of variables over
which scaling is approximately valid. We begin in section
2 by pointing out that a single gradient in a finite system
cannot set markers in proportion to the size of the developing
field. In section 3 we study the case of two gradients whose
binding sites overlap and show that approximate scaling then
occurs in a fraction of the developing field typically located
midway between the sources. We then turn to the annihilation
model of two gradients in section 4 and show that its scaling
performance is excellent throughout the developing field.

2. Single gradient

Let A be the concentration of the morphogen which in the
simplest model obeys

0 = Da∂
2
xA − βaA (1)

at steady state. Here Da is the diffusion constant of protein A

and βa is the degradation rate. Molecules of A are injected at
the left boundary with rate �a and are confined to the interval
[0, L] by a zero-flux boundary condition

−Da∂xA(0) = �a, −Da∂xA(L) = 0. (2)

The obvious solution is

A = λa�a

Da

[
sinh

(
L

λa

)]−1

cosh

(
L − x

λa

)

≡ A(L) cosh

(
L − x

λa

)
. (3)

The length scale λa is defined by λa = √
Da/βa .

Let us assume that the boundary between different gene
expression regions is determined by the position xt at which
A equals some threshold value At . Inverting, the expression
for the threshold position is

xt (L) = L − λa cosh−1(At/A(L)). (4)

Note that there is a minimum system size for a specific
threshold,

Lm = λa sinh−1

(
λa�a

DaAt

)
, (5)

such that xt (Lm) = Lm. When L−xt � λa the concentration
profile becomes purely exponential and xt → x∞ where

x∞ = λa ln

(
λa�a

DaAt

)
. (6)

Consider the functional form of xt (L). For L smaller than Lm

the function is undefined. At L = Lm its value is xt = Lm.
As L is increased further xt decreases and asymptotically
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Figure 1. A single gradient is insufficient to scale expression
boundaries with developing-field size. Shown is the dependence of
normalized xt on system length L for the case of a single gradient.
The solid lines are the analytic expressions (4) for xt/L for values of
the threshold concentration equal to (from top to bottom) At = 0.01,
0.1, 0.7. Dashed lines are x∞/L curves as given by (6). All
parameters are unity unless otherwise stated.

approaches x∞, which is always less than or equal to Lm.
In other words xt is always greater than x∞; this is because the
effect of the zero-flux boundary condition is to make xt larger
than it would be in the absence of the boundary. Figure 1 shows
the variation of xt/L with L for three different values of the
threshold concentration At . Perfect scaling would correspond
to xt/L ∼ constant. At the other extreme the complete absence
of scaling manifests itself in xt/L ∼ x∞/L. As is clearly
seen the actual xt/L curves are everywhere close to x∞/L

curves and are nowhere close to constants. We conclude that a
single gradient is insufficient to scale markers with developing
field size.

3. Combinatorial model

We next ask whether a molecular mechanism that computes the
expression level of a target gene based on the concentrations
of two different morphogens can lead to gene expression
boundaries that scale with system size.

Consider a cis-regulatory module in which the fold
change in transcription initiation F(A,B) is determined by
the concentrations of transcription factors A and B [15]. The
fold change is the ratio of the probability that RNA polymerase
is bound to the DNA in the presence of transcription factors to
the probability that it is bound in the absence of transcription
factors. We neglect the effect of post-transcriptional gene
regulation and make the gross assumption that the fold change
in transcription initiation is representative of the ultimate
fold change in gene expression. A reasonable definition of
the boundary between the ‘on’ and ‘off’ expression states is
F(A,B) = 0.5 ∗ Fmax where Fmax is the largest fold change
possible.

Consider also the case where the spatial profiles of the
transcription factors A and B are inhomogeneous. Suppose
we write both A(x) and B(x) in terms of the scaled position
x = x/L and the system size L. For each x between 0

and 1 there is a curve (A(x, L), B(x, L)) in the A–B plane
parametrized by L.

The general condition then that must be met to obtain
size scaling in this two-component combinatorial model is
as follows. A pair of morphogen gradients will scale the
expression boundary (at a scaled position x) of a given gene
provided the parametric curve (A(x, L), B(x, L)) coincides
with the half-maximal contour of the fold-change function
F(A,B) corresponding to that gene. To illustrate the
point we consider in the following a particular cis-regulatory
architecture within a thermodynamic framework [15]. We then
couple the resulting fold-change function to space via a pair
of exponentially distributed morphogen gradients.

Consider a gene whose cis-regulatory region contains a
binding site for a transcription factor A. This binding site
overlaps that of another transcription factor B. The factor B
does not recruit the RNA polymerase to the promoter (i.e.
it is not an activator) and its binding site does not overlap
the promoter (i.e. it is not a repressor). Instead B regulates
transcription by occluding the binding of A to the DNA.
The rate of transcription is proportional to the probability
f that the promoter is occupied. Assuming that the only
factor that interacts with the polymerase is A (which in turn
competes with B for DNA-binding), f will be a function only
of the concentrations A and B and of the RNA polymerase
concentration P. Assuming further that these molecules are in
equilibrium with the DNA we may write

f = Won

Won + Woff
≈ Won

Woff
(7)

where

Woff =
∑
σA,σB

W(σA, σB, 0) (8)

Won =
∑
σA,σB

W(σA, σB, 1). (9)

The statistical weights are given by

W(σA, σB, σP ) = ω
σAσP

AP q
σA

A q
σB

B q
σP

P (10)

where σi = 0 if molecule i does not occupy its binding site
and σi = 1 if it does. The statistical weights for the (1, 1, 0)

and (1, 1, 1) configurations are zero, as configurations in which
both A and B are bound to the DNA are excluded by the fact that
their binding sites overlap. The cooperativity factor ωAP � 1
between transcription factor A and the RNA polymerase P is
related to their interaction energy by ωAP = exp(−Eint/RT )

[19]. Note that no effective interaction, Eint = 0, corresponds
to a cooperativity factor of unity as is the case between B and
P. The q parameters are ratios of concentrations to dissociation
constants associated with binding to the DNA

qX = [X]/KX. (11)

The statistical weights are

Woff = 1 + qA + qB (12)

Won = qP (1 + ωAP qA + qB). (13)
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Figure 2. A plot of A against B when L is varied from 2 to 20, for
different values of the scaled coordinate x = x/L. The value of x
ranges in steps of 0.1 from 0.1 (upper most curve) to 0.9 (lower
most curve). The spatial distributions of the concentrations A(x)
and B(x) are exponential. For the combinatorial model considered
in the text the fold change in gene expression depends only on the
ratio of morphogen concentrations F(A,B) = F(A/B), and the
expression boundary is therefore defined by a straight line (with
slope r) going through the origin in the A–B plane. Scaling
therefore occurs when the ratio of morphogen concentrations
A(x)/B(x) remains constant as L is varied. The figure shows that
exponential morphogen gradients keep the ratio A/B constant only
at x = λa/(λa + λb) = 0.5 when L is varied. Hence perfect scaling
is achieved only at the centre of the developing field when λa = λb,
even when the source fluxes are unequal. All parameters are unity
unless otherwise stated.

Inserting these weights into (7) and taking the limits qA, qB �
1 we obtain

f (A,B) ≈ qP

1 + ωAP
A/B

Ka/Kb

1 + A/B

Ka/Kb

= f (A/B). (14)

As the basal transcription rate is independent of the
concentrations of A and B, the fold change F(A,B) = f/f0

also depends on A and B only through their ratio, F(A,B) =
F(A/B). The contours of the fold change in the A–B
plane are therefore straight lines going through the origin.
Furthermore the position of the half-maximal contour is given
by A/B = r = Ka/Kb.

We next define the equations governing the morphogen
gradients

0 = Da∂
2
xA − βaA (15)

0 = Db∂
2
xB − βbB (16)

in steady state. The boundary conditions are

−Da∂xA(0) = �a, −Da∂xA(L) = 0

−Db∂xB(0) = 0, −Db∂xB(L) = −�b.
(17)

Just as in the one-gradient case, one can distinguish between
relatively small systems (for which the no-flux boundary
conditions matter) and large systems, depending on how big
L is compared to the decay lengths λi . For sufficiently large
L, the gradients of A and B are purely exponential, A =
A(0) exp(−x/λa) and B = B(L) exp(−(L − x)/λb), where
the amplitudes are given by A(0) = �aλa/Da and B(L) =
�bλb/Db. The parametric curves (A(x, L), B(x, L)) for this
distribution of morphogens are shown in figure 2. One sees

immediately that there is only one (straight line) parametric
curve such that A/B is a constant independent of L. Hence,
in principle, a pair of exponentially distributed morphogens
coupled with the cis-regulatory architecture described above
can set markers scale-invariantly at only one location x∗ in
the developing field. It is easy to show that the ratio A/B is
independent of L if the normalized coordinate x is chosen to
be

x∗ = λa

λa + λb

. (18)

Correspondingly the slope of the straight-line parametric curve
is A(0)/B(L). Therefore the ratio r of dissociation constants
in the regulatory region must be

r∗ = A(0)/B(L) (19)

in order to obtain scaling.
Another way to obtain the parameters x∗ and r∗ is via the

equation

A(xr, L) = rB(xr , L) (20)

which defines the half-maximal contour of the fold-change
function F(A,B). Substituting the exponential forms for A

and B we obtain

xr = λa

λa + λb

{
1 − λb

L
ln

(
rB(L)

A(0)

)}
, (21)

as noted by Houchmandzadeh et al [17]. A number of features
of this equation are worthy of note. One sees immediately that
the scaled coordinate xr reduces to the L-independent value
x∗ when r is put equal to r∗ in agreement with the argument
presented above. This is because the length scale

Lc(r) = λb

∣∣∣∣ln
(

rB(L)

A(0)

)∣∣∣∣ (22)

vanishes when r = r∗. Equation (21) also tells us however
that the scaled coordinate xr is approximately independent
of system size L even when r is not exactly r∗. More
precisely, the scaled coordinate approaches x∗ in the large-
L limit Lc(r)/L 
 1.

Hence a pair of exponential morphogen gradients whose
target gene contains overlapping transcription-factor binding
sites can set the gene’s expression boundary at the scaled
position x∗ for a range of r values satisfying the inequality
Lc(r)/L 
 1. We note here that the scaled position x∗ is
(i) insensitive to source-level fluctuations, which only enter in
Lc, and (ii) close to 0.5 in a system in which the degradation
lengths of the two morphogen gradients are comparable.

This model can therefore achieve some degree of size-
scaling near the centre of the developing field. We have
in mind, however, a situation where multiple genes need to
be regulated, each at different points along the developing
field. We would therefore like to know how well two opposing
morphogen gradients can perform in scaling a set of expression
boundaries that span the developing field. Of course a pair of
morphogen gradients can always be made to scale a boundary
at an arbitrary location x in the developing field by choosing
a cis-regulatory architecture whose half-maximal fold-change
contour coincides with the x parametric curve of the gradients.
Indeed, such cis-regulatory tuning of a set of genes, each
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expressed in a different spatial domain but all controlled by
a common pair of morphogens, may well be possible by
evolution. We consider however the simpler case in which
all the target genes have the simple cis-regulatory architecture
described above and differ only in the value of the ratio
r = Ka/Kb of their dissociation constants. We then ask how
well the corresponding expression boundaries can be scaled
by a pair of oppositely directed morphogens.

Now each gene has its own value of r and hence its own
value of xr . Equation (21) tells us how the scaled coordinate
xr changes with system size L. For those genes that satisfy
Lc(r)/L 
 1 the scaled coordinate depends only weakly on
L. Therefore the boundaries, located close to the centre of
the developing field, scale very well with system size. On
the other hand for those genes that satisfy Lc(r)/L ∼ 1 the
scaled coordinate depends strongly on L. In this case, therefore,
the boundaries, which are now located near the edges of the
developing field, scale poorly with system size.

Equation (21) was derived using gradients that do not
strictly satisfy the zero-flux boundary conditions. Therefore to
quantitatively characterize the variation of xr with L close
to the edges of the developing field we must return to the
expression for A in (3) (and a similar one for B). These
equations lead to the following implicit equation for xr

A(L)

cosh(xr/λb)
= rB(0)

cosh((L − xr)/λa)
(23)

valid for a finite system. It is useful to identify what happens
to xr when the length L is made smaller. Note that there is a
different behaviour depending on which of A(L) and rB(0) is
larger. Specifically, if A(L) is larger, there is a smallest length
below which xr given by this formula becomes larger than L;
this length is given by

L∗(r) = λb cosh−1

(
A(L)

rB(0)

)
. (24)

If, on the other hand, the ordering is reversed, then we obtain
negative values for xr below the length scale

L∗(r) = λa cosh−1

(
rB(0)

A(L)

)
. (25)

Representative xr/L curves are shown in figure 3 for the case
of equal decay lengths λa = λb.

Consider now a developing field of size L subject to
a natural variation in size of L ± pL with 0 � p � 1.
The variation in the fractional position at which a gene
(characterized by a ratio of dissociation constants equal to
r) is turned on is then given by

δ
(xr

L

)
≡ xr(L − pL)

L − pL
− xr(L + pL)

L + pL
. (26)

We show in figure 4(a), again for the equal decay length case,
the dependence of δ (xr/L) on normalized position xr/L in
a developing field of size L = 4. In this figure r is an
implicit parameter which is varied so that xr/L spans the unit
interval. Note that the curve terminates before the boundaries
of the unit interval is reached; this is because one encounters
unphysical values of xr |L−pL at these values of xr/L. For
example, the curve terminates on the right at that value of r
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Figure 3. The combinatorial model sets markers across the
developing field in a more scale-invariant fashion at larger
developing field sizes L than at smaller L. This graph shows the
dependence of xr = xr/L on system length L, as given by (23), for
values of the threshold ratio equal to (from top to bottom)
r = 10−5, 10−3, 10−1, 0.5, 1. All parameters are unity unless
otherwise stated. Note that at the position x∗ = λa/(λa + λb) =
0.5 the value of the ratio of dissociation constants is
r∗ = A(0)/B(L) = 0.5.

for which xr |L−pL hits unity. As expected the variation is
largest (in magnitude) closest to the boundaries and vanishes
at xr/L = x∗. Now define an arbitrary scaling criterion by

δ (x/L) � 5%. (27)

Then, according to this criterion, exponentially distributed
morphogen gradients coupled to a cis-regulatory architecture
of the form F(A,B) = F(A/B) scale expression boundaries
only in the central region of the developing field between about
30% and 70% of L when L = 4.

Closest to the edges of the developing field the variation
δ (xr/L) is about 14%. Since the slopes of the xr/L curves
at xr/L = 1 become flatter as L is increased (see figure 3),
one might wonder whether operating at larger system sizes will
decrease this variation. This would in turn increase the fraction
of the developing field over which scaled boundaries exist.
However, at larger system sizes the flattening effect is offset
by the fact that one must sample larger and larger portions
of the xr/L curve when evaluating δ (xr/L). The extent to
which these effects cancel is shown in figure 4(b) where we
show the variation δ (xr/L) closest to the right boundary of
the developing field as a function of L. The variation decreases
with increasing L, but an elementary calculation, outlined in
the appendix, reveals that it has the lower bound p/(1 + p).
For a percentage variation p = 10% in system size this lower
bound is about 9%. We conclude that increasing system
size is not sufficient to make the combinatorial model, in the
particular guise considered here, meet the scaling criterion in
(27) throughout the developing field.

A further difficulty with the combinatorial model is
its susceptibility to small-molecule-number fluctuations. In
general, we must expect Lc of order λ, since we cannot
independently adjust the morphogen sources for the multiple
genes that need to be controlled. In fact, the natural
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Figure 4. (a) Quantitative measure of the scalability of markers at
various locations in the developing field in the combinatorial model
showing that markers become less scalable as they move away from
x∗. This graph shows the variation δ(xr/L), as defined in (26), as a
function of normalized position xr/L in the developing field for
L = 4 and a percentage change in system size of 10%. The point at
which the curve crosses zero is x∗. (b) The variation δ(xr/L) closest
to the right boundary of the developing field as a function of L (solid
line). At each L we have chosen the target gene whose threshold
ratio r satisfies L∗(r) = L − pL. The variation in the fractional
position at which this gene is turned on is then given by δ( xr

L
) =

1 − xr (L+pL)

L+pL
. The dashed line is the asymptotic expression in (A.8).

The horizontal (red) line is the limiting value p/(1 + p) of the solid
and dashed curves.

interpretation of r as being due to binding differences between
different transcription factors suggests that Lc would vary
significantly. In such cases the limit L � Lc would force
the comparison point xr far down the profile from the source;
having enough molecules at this point to effect the necessary
DNA binding would then place a severe constraint on source
strengths. In more detail, a nucleus with volume Vn would
see a fractional fluctuation in molecule numbers of order
(A(xr)Vn)

− 1
2 . Were this to be interpreted as a shift in the

matching point, we would obtain an error

δ
(xr

L

)
� λ

L

1√
A(xr)Vn

. (28)

The nuclear volume is probably of order 1 µm3; hence a
5% error at, say, L = 8 would necessitate a matching point
concentration of approximately 10 nM. Since this is down

by a factor of 10–50 from the boundary concentration, this
may begin to be a serious limitation on the efficacy of the
combinatorial approach. In this regard a combinatorial mode
of action may favour power law (resulting e.g. from nonlinear
degradation [20]) over exponential profiles, as the former have
greater range than the latter. This, however, remains to be
studied.

4. Annihilation model

We return to the standard model of morphogenesis in which
cell-fate boundaries are determined according to the position at
which a single morphogen crosses a threshold concentration.
We couple this gradient to an auxiliary gradient directed from
the opposite end of the developing field. We then ask under
what conditions the primary gradient may scale with system
size.

We consider two species of morphogen, A and B, in a
one-dimensional system of length L with As and Bs injected at
opposite ends of the system. The boundary conditions are as
in section 3. The species interact according to the annihilation
reaction A + B → ∅. In a mean-field description the kinetics
is described by the reaction–diffusion equations

∂tA = Da∂
2
xA − βaA − kAB (29)

∂tB = Db∂
2
xB − βbB − kAB (30)

where k is the annihilation rate constant. Later, we will
consider more complex models which incorporate nonlinear
degradation or nonlinear (i.e. concentration-dependent)
diffusion.

This system of equations, with fluxes �a = �b = � and
without any proteolysis (βa = βb = 0), was considered by
Ben-Naim and Redner [21]. They determined the steady-state
spatial distribution of the reactants and of the annihilation
zone which they chose to be centred in the interval [0, L]. The
annihilation zone is roughly the support of R(x) = kA(x)B(x)

or, put another way, that region where the concentration of both
species is appreciable. With the aid of a rate-balance argument,
they showed that the width w of the annihilation zone scales
as �−1/3 and that the concentration in this zone is proportional
to �2/3 when w 
 L.

Our goal is to understand the relation of the steady-
state concentration profiles to the system length L. It is
convenient to identify the point xe in the annihilation zone
where the profiles cross, A(xe) = B(xe). In the original Ben-
Naim–Redner model, the reaction–diffusion equations yield
no unique value for xe; instead xe can lie anywhere in the
interval [0, L] depending on the choice of initial condition. To
see this consider the following rate-balance argument. Since
the particles annihilate in a one-to-one fashion the flux of
each species into the annihilation zone must be equal. But
this condition does not determine xe uniquely because these
fluxes are always equal to the input fluxes at the boundaries.
Similarly, the model without proteolysis cannot support steady
states with unequal boundary fluxes. If, however, we now add
active degradation terms to the steady-state equations, then the
flux of each species into the annihilation zone is the flux into
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the system less the number of degradation events that happen
before reaching the zone. Thus, the flux of each species into
the annihilation zone now depends on the location xe and so
there is only one value of xe that balances the fluxes. As we
will see, our models will always contain unique steady-state
solutions.

A rough estimate of the concentration in the annihilation
zone and of the width of the zone can be obtained using
the original Ben-Naim–Redner rate-balance argument [21].
We identify three spatial regions: the first where A is in the
majority; the second the annihilation zone; and the third where
A is in the minority. Assume that the concentration of As in
this latter region is negligible compared with that in the other
two regions. The concentration of As in the annihilation zone
should then be on the order of the slope of the concentration
profile in the annihilation zone times the width w. The slope
of the A profile in this region is proportional to je/Da ,
where je is the equal flux of As or Bs into the annihilation
zone. Therefore the concentration in the annihilation zone
Ae = A(xe) is

Ae ∼ jew/Da. (31)

If we ignore the loss of A particles in the annihilation zone
due to proteolysis (a valid approximation for small enough
w), then the number of annihilation events per unit time kA2

ew

should equal the flux je. Balancing these two rates gives
je ∼ k(jew/Da)

2w. Hence the width of the annihilation zone
scales as

w ∼
(

D2
a

jek

)1/3

. (32)

In what follows, we will be mostly interested in taking k large
enough to give a very small w.

5. The high-annihilation-rate limit

We now explicitly assume that the parameters lie in the limit
where w 
 min{xe, L − xe}. This limit has the considerable
advantage that the A–B system may be decoupled by replacing
the coupling term kAB by a zero-concentration boundary
condition at xe. In this approximation the concentration of
the A subsystem satisfies

0 = Da∂
2
xA − βaA (33)

subject to the boundary conditions −Da∂xA(0) = �a and
A(xe) = 0. The solution to this equation is

A(x) = λa�a

Da cosh(xe/λa)
sinh

(
xe − x

λa

)
= A∗ sinh

(
xe − x

λa

)
(34)

where as before λa = √
Da/βa . A∗ is a characteristic

concentration of the A field related to the slope of the A field
at xe according to A∗ = −λa∂xA(xe). The flux of A particles
is

ja(x) = ja(xe) cosh

(
xe − x

λa

)
(35)

where the flux into the annihilation zone ja(xe) is given by
ja(xe) = �a/ cosh (xe/λa). Substituting this into (32) yields

the scaling function of the annihilation zone width for the case
of linear degradation

w ∼ w0 [cosh(xe/λa)]
1/3 . (36)

Here w0 ∼ (
D2

a

/
�ak

)1/3
is the width of the annihilation

zone in the absence of degradation [21]. Note that we may
also substitute this expression for ja(xe) into (31) obtaining
Ae ∼ w/ cosh(xe/λa). One can then verify that Ae is much
smaller than A(0) whenever w 
 xe and hence approximating
this as a zero boundary condition is self-consistently valid.

The B subsystem can be treated similarly, except that
the length of the subsystem in this case is L − xe. The
only dependence on the annihilation rate k in the inequality
w 
 xe occurs in w0. Hence this limit is equivalent to the
high-annihilation-rate limit k � k0, where the threshold value
k0 of the annihilation rate is given by

k0 ∼ D2
a

�aλ3
a

cosh(xe/λa)

(xe/λa)3
. (37)

We determine the annihilation zone location by balancing
fluxes into the zone, ja(xe) = −jb(L − xe). This leads to the
following equation for xe:

�a

cosh
(

xe

λa

) = �b

cosh
(

L−xe

λb

) . (38)

In the special case λa = λb this equation coincides with the
implicit definition of xr (with r = 1) which arose in the
combinatorial model (see (23)). As in that model there is
a smallest length L∗ defined by

L∗ = λa cosh−1

(
�a

�b

)
if �a > �b and by

L∗ = λb cosh−1

(
�b

�a

)
if the flux ordering is reversed. As our entire treatment of
the annihilation zone only makes sense if 0 � xe � L,
we must always choose L � L∗. A comparison of the
numerical solution of the full model with the results of the
large-annihilation-rate approximation is shown in figure 5.

Once we know xe(L) and A(x), we can proceed to
determine the qualitative features of the xt (L) function with a
view to identifying the region of system sizes where xt ∼ L.
Inverting (34) we find

xt = xe − λa sinh−1 η (39)

where

η = At/A∗. (40)

Note that xt depends on L only through its dependence
on xe and the function xt (xe) is monotonically increasing.
Obviously xt � xe. In the limit of sufficiently large xe, we can
replace the inverse hyperbolic function with a logarithm and
obtain the simpler form

xt ≈ xe − λa ln(2η). (41)

Here, η ≈ At

A(0)
1
2 exe/λa , and xt approaches its asymptotic value

x∞ ≈ λa ln(A(0)/At ) from below. This is of course the
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Figure 5. (a) The high-annihilation-rate approximation is quite
accurate at k = 100. Here this approximation (solid line, see (34)) is
compared with the numerical solution (plus signs) of the full
annihilation model (see (29) and (30)). The annihilation zone is the
reaction front R(x) = kA(x)B(x). All parameters are unity unless
otherwise stated. (b) A(x) plotted on a logarithmic scale in the cases
k = 0.01 and k = 100. Note the crossover from slow decay in the
A-rich region to fast decay in the B-rich region in the case k = 100.
All parameters are unity unless otherwise stated.

answer one would obtain in the absence of any auxiliary
gradient.

Now, imagine reducing L and hence xe from its just-
mentioned asymptotic regime and plotting the ratio xt/L. For
the case �a > �b, xe will eventually hit L followed shortly
thereafter by xt/L hitting unity. There is no reason why this
curve should exhibit a maximum, and a direct numerical
calculation for k = 100 (shown in figure 6) verifies this
assertion. The situation is dramatically different, however,
for the case of �b > �a . Now xe must approach zero,
implying that at some larger L we have xt = 0. The curve
xt/L now exhibits a maximum, as is again verified by direct
numerical calculations using both the large-annihilation-rate
approximation and also by just solving the initial model with
no approximations whatsoever (see figure 7). Near the peak of
the curve we have scaling with system size. For completeness,
we also present in figure 8 the results for equal fluxes.

To compare the scaling performance of the annihilation
model with that of the combinatorial model we show in
figure 9 the dependence of the variation δ (xt/L) on normalized

0 2.5 5 7.5 10 12.5 15 17.5 20
0

0.2

0.4

0.6

0.8

1

k = 100; Γ
a
 = 1; Γ

b
 = 0.5

L

x t/L

At = 0.01

At = 0.1

At = 0.7

Figure 6. The annihilation model does not show a scaling region
when the A flux is greater than the B flux. Dependence of
normalized xt on system length L with k = 100 and �b < �a . The
plus signs, circles and crosses are numerical solutions of
equations (29) and (30) for values of the threshold concentration
equal to (from top to bottom) At = 0.01, 0.1, 0.7. The solid lines
are the corresponding analytic expressions (39) obtained in the
high-annihilation-rate limit. Dashed lines are x∞/L curves as given
by (6). All parameters are unity unless otherwise stated.

0 2.5 5 7.5 10 12.5 15 17.5 20
0

0.2

0.4

0.6

0.8

1

k = 100; Γ
a
 = 1; Γ

b
 = 2

L

x t/L

At = 0.01

At = 0.1

At = 0.7

Figure 7. The annihilation model can set markers across half of the
developing field (L ≈ 4) in a roughly scale invariant manner when
the A flux is less than the B flux. Dependence of normalized xt on
system length L with k = 100 and �b > �a . The plus signs, circles
and crosses are numerical solutions of equations (29) and (30) for
values of the threshold concentration equal to (from top to bottom)
At = 0.01, 0.1, 0.7. The solid lines are the corresponding analytic
expressions (39) obtained in the high-annihilation-rate limit.
Dashed lines are x∞/L curves as given by (6). All parameters are
unity unless otherwise stated.

position xt/L in the developing field for L = 4. One sees
that, according to our scaling criterion in (27), the annihilation
mechanism can easily set markers scale-invariantly throughout
a developing field whose size is a few decay lengths.
Furthermore at such system sizes a range of threshold
values spanning two orders of magnitude (ct = 0.01–0.7)
is sufficient to cover the entire developing field (see the
k = 100 results in figure 7). Such a modest variation in
concentration makes the annihilation model less susceptible
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Figure 8. When the A and B fluxes are equal only some of the xt/L
curves have maximums as a function of L. Dependence of
normalized xt on system length L with k = 100 and �b = �a . The
plus signs, circles and crosses are numerical solutions of
equations (29) and (30) for values of the threshold concentration
equal to (from top to bottom) At = 0.01, 0.1, 0.7. The solid lines
are the corresponding analytic expressions (39) obtained in the
high-annihilation-rate limit. Dashed lines are x∞/L curves as given
by (6). All parameters are unity unless otherwise stated.

to small-molecule-number fluctuations than the combinatorial
model.

6. Discussion

We have considered two scenarios in which a pair of oppositely
directed morphogen gradients are used to set embryonic
markers in a size-invariant manner. In the simplest scenario,
in which the gradients interact only indirectly through
overlapping DNA-binding sites, exponentially distributed
fields achieve perfect size scaling at a normalized position
λa/(λa +λb) determined only by the morphogen decay lengths
λa and λb. For equal decay lengths, the accuracy with which
this model can set markers size-invariantly decreases as the
boundaries of the developing field are approached. At the
boundaries the accuracy can be no better than δ(xr/L) =
p/(1 + p) where p is the percentage variation of the field
size. In the second model A and B are coupled via the
reaction A + B → ∅ and the embryonic markers are set by
a single gradient with the second gradient serving only to
provide size information to the first. In this scenario, it is
easy to arrange parameters such that scaling occurs with an
accuracy, measured by δ(xt/L), of better than 5% over the
entire developing field for field sizes of only a few decay
lengths.

In practice a given morphogen may play both roles
in patterning, setting markers in a strictly concentration-
dependent manner at some locations in the developing field
and in a combinatorial fashion at other locations [13]. The
annihilation model naturally sets markers via the gradient
whose source is closest to the marker [22], whereas the
combinatorial model is better suited to setting markers in
the vicinity of the midpoint of the developing field where
the variation δ(xr/L) is smallest. As the variation δ(x/L) has
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Figure 9. According to the scaling criterion δ (x/L) � 5% the
annihilation mechanism can set markers scale-invariantly
throughout a developing field whose size is a few decay lengths.
Both graphs above show the dependence of the variation δ (xt/L) on
normalized position xt/L in the high-annihilation-rate
approximation of the annihilation model (solid red lines). Positions
to the left of xe/L ≈ 0.4 are set by the A gradient while positions to
the right are set by the B gradient (see figure 5). In addition we show
the dependence of δ (xt/L) on xt/L for (a) k = 100 and (b)
k = 1000. All parameters are unity unless otherwise stated.

a qualitatively different dependence on x/L in either case, a
measurement of this curve in a developmental system may
distinguish between the mechanisms.

The origin of the scaling form f (x/L) which arises in the
strong-coupling limit of the annihilation model is the effective
boundary condition A(xe) = 0. In the case �b > �a (see
figure 7) the xt/L curve has a maximum because at small L
(L ∼ L∗) it tends to zero along with xe/L while at large L
(L � L∗) it is bounded above by x∞/L. In the k 
 k0 limit,
on the other hand, the zero-concentration effective boundary
condition is replaced by a zero-flux boundary condition
ja(L) = 0 which can never induce the xt ∼ L scaling.

This approach makes it clear why the scaling occurs at
intermediate values of L. Once we reach the non-overlapping
limit where the two fields do not effectively communicate,
the threshold is set by the A profile alone; we have already
seen that this cannot give any scaling. For L too small, the
annihilation-zone width w becomes comparable to xe, there
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is no effective boundary condition and again scaling fails. In
fact, if one looks at the expression for w/xe, namely

w

xe

∼ w0

λa

(
cosh(xe/λa)

(xe/λa)3

)1/3

(42)

(where w0 ∼ (
D2

a

/
�ak

)1/3
), one sees that the maximum in

xt/L occurs close to the minimum of w/xe which is reached
at xe/λa ≈ 3.

So far we have used linear degradation and simple
diffusion in the annihilation model. However, it should be
clear from the arguments above that the qualitative features
of this model are rather insensitive to changes in the nature
of the individual gradients. As an example, let us consider
quadratic degradation. In the limit that the system size is
so big as to render the coupling term kAB irrelevant, the A

and B profiles reduce to power laws, A = a/(x + εa)
2 and

B = b/(L − x + εb)
2. The corresponding L-independent

threshold position x∞ is given by

x∞ = εa

(√
A(0)

At

− 1

)
. (43)

An argument similar to one presented earlier for linear
degradation shows that as L is decreased from this large-L
limit, xe will eventually be forced to zero provided �b > �a .
This indicates again that, to the extent we can believe the large-
annihilation-rate approximation, there will be a maximum in
the xt/L curve. This is illustrated for one specific choice of
parameters in figure 10(a). The maximum again takes place
roughly where L becomes so small as to cause the annihilation-
zone width to approach xe. Repeating the derivation of w

outlined in section 5 but using a power law for A(x) instead
of hyperbolic sine we obtain

w

xe

∼ w0

εa

(
1 +

1

xe/εa

)
. (44)

This expression is a good qualitative description of the exact
w/xe shown in figure 10(a) and diverges when L → 0 as in
the case of linear degradation. Note that scaling is lost when
w → xe even though the rate of the annihilation reaction
becomes large (figure 10(b)). Finally, one can also ask about
the effect of making the diffusion constant concentration
dependent. This type of effect can arise whenever the
morphogen reversibly binds to buffers that differ in mobility
from the pure molecule. Figure 11 illustrates the behaviour
under the simplest assumption, namely that the diffusion
constant varies linearly with concentration for both the A

and B fields. Aside from sharpening the transition from
the asymptotic non-interacting regime to the regime where xe

approaches zero (as L is lowered), the basic phenomenology
is unchanged.

The focus of our work has been the scaling issue.
However, we should not lose track of the other requirement for
developmental dynamics, namely that the system be relatively
robust to fluctuations in parameters such as source fluxes.
Figure 12(a) presents data regarding the variation of xt with �a

and �b in the annihilation model. For simplicity the data are
presented for the case of equal decay lengths, λa = λb = λ.
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Figure 10. (a) Quadratic degradation does not alter the qualitative
form of the xt/L curves in the annihilation model. The plus signs,
circles and crosses are numerical solutions of the full annihilation
model for values of the threshold concentration equal to (from top to
bottom) At = 0.01, 0.1, 0.7. The dashed lines are x∞/L curves as
given by (43). Also shown (cyan diamonds) is the ratio of the full
width at half maximum w to the comparison point xe. (b) The
dependence of the amplitude Rmax of the local annihilation rate
R(x) = kA(x)B(x) on system length L. In (a) and (b) all
parameters are unity unless otherwise stated.

The basic conclusion is that the coefficient of variation χi ,
defined as

δxt

λ
=

{
χa

δ�a

�a

−χb
δ�b

�b
,

(45)

starts at 1/2 at At = 0 and then asymptotes to either 1 for
variations in �a or zero for variations in �b. These asymptotic
values are of course precisely the results obtained for the one-
exponential-gradient model. The fact that χi at small xt is
1/2 can be understood by noting that in this limit xt is just
xe, which can easily be shown to be approximately (i.e. for
large enough L) xe ≈ 0.5(L ± Lc) with Lc = λ |ln (�b/�a)|.
With this approximation for xe and taking differentials of xt

we obtain

χa = 1

2
+

η√
1 + η2

[
1 − 1

2
tanh

(xe

λ

)]
(46)

116



Embryonic pattern scaling

0 2.5 5 7.5 10 12.5 15 17.5 20
0

0.2

0.4

0.6

0.8

1

k=100; Γ
a
=1; Γ

b
=2

L

x t/L

A
t
 = 0.01

A
t
 = 0.1

A
t
 = 0.7

Figure 11. The qualitative form of the xt/L curves is not affected
by the addition of nonlinear diffusion to the annihilation model. The
graph shows the dependence of scaled threshold position xt/L on
system length L in the simplest case of nonlinear diffusion,
Da = δaA and Db = δbB. The degradation terms are linear. The
plus signs, circles and crosses are numerical solutions of the full
annihilation model for values of the threshold concentration equal to
(from top to bottom) At = 0.01, 0.1, 0.7. Dashed lines are
corresponding curves in the case k = 0.01. All parameters are unity
unless otherwise stated.

χb = 1

2

[
1 − η√

1 + η2
tanh

(xe

λ

)]
(47)

where, as before, η = At/A∗. These are good approximations
at all values of η for percentage variations in source
fluxes as large as 5% (see figure 12(a)). The reduction of
the χ values from unity represents an increase in system
robustness as compared with the single-exponential-gradient
model (albeit with a new sensitivity to the B gradient) in
agreement with earlier work [16]. For comparison we also
show in figure 12(b) the coefficient of variation that arises in
the single-gradient model. The approximation to χa in this
case is given by

χa = η√
η2 − 1

(48)

where now η is defined by η = At/A(L). Note that the effect
of the boundary (η ↓ 1) is to increase the sensitivity of the
gradient to variations in the source flux over that for a simple
exponential.

The coefficient of variation χi in the combinatorial model
is also smaller than unity [17]. However, Howard and
ten Wolde, who considered both correlated and uncorrelated
fluctuations in the A and B sources, have found that a
combinatorial mechanism is less robust to variations in its
parameters than an annihilation mechanism [16].

The bicoid-hunchback system is an ideal platform to test
the ideas explored in this work. The embryo at this stage of
development is a quasi-two-dimensional array of nuclei in a
common cytoplasm and the diffusive properties of the Bicoid
morphogen in the syncytium have recently been characterized
[9]. In addition the Bicoid-DNA dissociation constant is
known and is approximately KD ∼ 10 nM to 100 nM [23].
However, more quantitative work needs to be done. The
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Figure 12. Simple quantitative measure of the robustness of (a) the
annihilation mechanism and (b) the single-source model to
source-level fluctuations. Shown are sensitivity of the threshold
position xt to infinitesimal variations in the source fluxes �a and �b

in (a) the annihilation model (constant diffusion constant and linear
degradation) and (b) the single-gradient model. The coefficient of
variation χi is defined by (45) in the text. The data plotted as plus
signs and circles were obtained by solving numerically the full
model, while the dashed lines represent (from top to bottom)
equations (46), (47) and (48). All parameters are unity unless
otherwise stated.

concentration of Bicoid and Hunchback protein in the embryo
are not known, though the intraembryonic concentration of
the Pumilio protein, a translational regulator of the hunchback
gene in Drosophila, has been estimated to be about 40 nM
[24]. It is also crucial to measure the flux of Bicoid being
translated at the anterior end of the embryo. Finally, it is not
yet known when precisely the Bicoid gradient is actually read
[11], although we have assumed here that the gradient reaches
steady state before it begins transcription.

A large-scale search of the Drosophila genome uncovered
only one gene that affected precision [2, 25]. This gene, a
maternal gene called staufen, creates a product that is known
to localize to both poles of the egg [26, 27], suggestive of
the existence of two opposing gradients. There is however no
direct evidence for a second gradient opposing the maternal
Bicoid gradient, though the Bicoid protein does contain
domains by which co-repressors affect its activity [28] as
recently pointed out by Howard and ten Wolde [16]. In this
regard, it is worth recalling that the annihilation mechanism
relies on the existence of an active form of the Bicoid protein
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A, and an inactive form A∗ in which A is bound to a
co-repressor. It may be the case that current experiments have
probed only the total Bicoid concentration A(x) + A∗(x), and
not the active gradient A(x). An immunostaining experiment
designed to discriminate between the active and inactive
forms of A (possibly by directing the antibody to bind one or
more of Bicoid’s repression domains) would offer a definitive
test of the annihilation mechanism in the bicoid-hunchback
problem; this has not yet been investigated. In principle one
can also determine the spatial distribution of the complex A∗
by fluorescence resonance energy transfer. Thus, at least for
the time being and for this particular system, our proposed
scaling mechanism must be considered to be conjectural.
Moreover, although a cancellation of effects [17] can
in principle explain the two-temperature microfluidics
experiment of Lucchetta et al on the Drosophila embryo [18],
the ability of developmental patterning to compensate for a
temperature gradient remains challenging to explain with a
two-gradient hypothesis.

In terms of applying our general results to the specific
case of Bicoid, we should also mention the very recent re-
examination by Crauk and Dostatni of the hunchback scaling
problem [25]. The authors looked at mRNA distributions
instead of protein distributions [2] confirming that the pattern
scaling phenomenon occurs at the level of transcription. They
showed that a lacZ reporter gene, with only Bicoid binding
sites upstream of the transcription start site, also produced
a scaled expression profile. This calls into question the
applicability of a combinatorial model to scaling in this system.
Surprisingly, Crauk and Dostatni also showed that Gal4-
derived transcription factors, when expressed in a Bicoid-like
gradient in the embryo, can also scale the expression pattern of
a Gal4-responsive transgene. Bicoid and Gal4-3GCN4 (one of
the transcription factors used) have no sequence homologies.
But the annihilation mechanism relies on the ability of an
activator to bind to another molecule (termed a co-factor) that
inhibits its transcriptional activity. If we are to believe the
annihilation mechanism, Crauk and Dostatni’s work shows
that this co-factor must act generally enough to interact with
both Bicoid and Gal4-3GCN4. Alternatively, scaling must
work by modulating the mRNA localization by some unknown
mechanism and would hence fall outside the considerations of
this paper.

With a scaling criterion δ(x/L) < 5%, the annihilation
model predicts that the embryo can tolerate a variation in L/λ

about the value L/λ ≈ 4 − 5 of no more than about 20%. The
embryo can therefore buffer small variations in L, which arise
from embryo variability within a species, without adjusting
λ. Within the annihilation framework however larger changes
in L must be accompanied by a proportionate change in λ if
the embryo is to continue to buffer small embryo-to-embryo
variability in L. Large changes in L can occur across species
where, for example, the eggs of closely related dipteran species
vary over at least a factor of 5 in length. The proportionality of
λ with L that emerges in the annihilation model is supported
by recent experiments on embryos of a number of dipteran
species [9].

7. Conclusion and outlook

In this paper, we have shown that coupling two oppositely
directed morphogen gradients allows patterns to be set in
approximate proportion to the size of the developing field. We
have considered two coupling mechanisms, the most effective
of which couples the gradients via a phenomenological
annihilation reaction. Such a mechanism can set boundaries
of gene expression across the developing field with a small
sample-to-sample variation in the normalized position of
the boundaries. In this scenario, there is no magic bullet
that ensures either exact scaling or complete robustness.
Instead, the effective boundary condition created by the
annihilation reaction allows approximate scale invariance to
emerge in one reasonably-sized range of parameter space and
similarly lowers the sensitivity of any threshold to source-level
fluctuations. Our general framework predicts the emergence
of pattern scaling at developing-field sizes of approximately
four to five times the decay length. This is in good
agreement with measurements in the Drosophila embryo [2]
and provides a natural explanation for the scaling of decay
length with embryo size observed recently in a number of
closely related dipteran species [9]. Presumably, one could
obtain even more robustness, better scaling, and possibly
even temperature compensation [18], via the introduction of
additional interactions.

As has been emphasized throughout, our work addresses
the general question of precise scaling without committing
to the specifics of any explicit example. As attractive as it
might be to apply our two gradient model to the well-studied
bicoid-hunchback problem, there are possible difficulties with
this notion. We look forward to more detailed quantitative
measurements of the relevant concentration profiles in this
(and other systems) as we try to unravel the mechanisms used
to ensure the proper patterning of growing embryos.
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Appendix

Consider the set of xr/L curves shown in figure 3. Each curve
intersects zero or unity at a field size L = L∗(r). For a given
developing field size L there is a range of r values such that
the corresponding xr/L values span the unit interval. The
variation

δ
(xr

L

)
≡ xr(L − pL)

L − pL
− xr(L + pL)

L + pL
(A.1)

will in general start at zero at xr/L = x∗ and increase
monotonically as the edges of the developing field are
approached. We wish to find the maximum value this variation
attains throughout the developing field in the limit of large
field sizes. Since the curve is symmetric for λa = λb = λ it is
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sufficient to focus on the edge x = L. As the variation samples
the xr/L curve at Ll = L − pL it is clear that at xr/L = 1 the
variation uses an unphysical value xr/L > 1. In other words
for each L there is a limit to how small we can make r while
still evaluating a physically sensible variation. This limiting
value of r, call it rL, is defined by L∗(rL) = Ll = L − pL

which can be rewritten as

rL�b/�a = 1/ cosh(Ll/λ) (A.2)

with the aid of (24). By definition we have

δ
(xrL

L

)
= 1 − x(rL, L + pL)

L + pL
. (A.3)

Now when the system size is Lu = L + pL the point at which
A/B = rL is given by

x(rL, Lu) = −λ

2
ln γ (rL, Lu) (A.4)

where

γ (rL, Lu) = −exp(−Lu/λ) − rL�b/�a

exp(Lu/λ) − rL�b/�a

. (A.5)

Taking the L � λ limit of (A.2) and substituting into the
expression above for γ (rL, Lu) we obtain

γ (rL, Lu) = γ (Ll, Lu) = −0.5 exp((−Lu + Ll)/λ) − 1

0.5 exp((Lu + Ll)/λ) − 1
.

(A.6)

Rewriting in terms of L and p and taking the limit pL � λ we
get

γ (L) ≈ 2 exp(−2L/λ). (A.7)

Finally, using (A.3) and (A.4) and taking the limit pL � λ

once again we obtain

δ
(xrL

L

)
≈

1 + λ
pL

ln 2
2

1 + 1/p
(A.8)

≈ p

1 + p
, (A.9)

which is the large-L limit of the curves in figure 4(b).

Glossary

Pattern scaling. Typically genes are expressed in
well-defined regions of a developing field. The boundaries of
these regions, determined by morphogen gradients, need to
be placed at the correct position in the developing field;
incorrect placement can result in death. The correct position
is a certain fraction of the developing field size, which may
vary by up to 20%. Pattern scaling refers to the ability of the
embryo to adjust its boundaries of expression x such that
when normalized by the size of the corresponding developing
field L the ratio x/L has a spread about the functional value
of, say, no more than 5%, i.e. δ(x/L) � 0.05.

Bicoid. Bicoid mRNA is deposited by the mother in the
Drosophila embryo and localized to the anterior region where
it is translated soon after the egg is laid. The Bicoid protein
can diffuse along the anterior–posterior axis, giving rise to a
concentration gradient with its highest point at the anterior

pole. Bcd is a homeodomain transcription factor that
activates zygotic transcription in the embryo. The Bicoid
gradient is the prototypical morphogen gradient [7].

Combinatorial model. A generic model in which the
concentrations of a combination of morphogens (the input)
determine the expression level of one or more target genes
(the output). That part of the DNA where the morphogens
bind is called a cis-regulatory module; a target gene may have
multiple independent modules. The morphogens positively
or negatively regulate the recruitment of the basal
transcription machinery to the core promoter.

Annihilation model. In the annihilation model only one of
the morphogens, say A, regulates the expression level of the
target gene. The second morphogen B binds to A forming a
product A∗ which is unable to activate transcription. If the
reaction is irreversible then the steady-state dynamics of A∗
decouples from that of A and B which in turn becomes
describable by the simpler annihilation reaction A + B → ∅.
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