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Spatiotemporal Control of Wave Instabilities in Cardiac Tissue
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Electrical waves circulating around an obstacle in cardiac tissue are subject to a generic oscillat
instability. In a one-dimensional ring geometry this instability can produce both quasiperiodic an
spatiotemporally chaotic oscillations while in a two-dimensional sheet of cardiac tissue it can lead
spiral wave breakup. We present a control scheme to prevent this instability in these two geometr
which is based on applying a feedback current at a discrete set of control points during the repolariz
phase of the action potential. The feasibility of this scheme is demonstrated via simulations of a tw
variable model of excitable media with restitution and of the Beeler-Reuter model of ventricular actio
potential.

PACS numbers: 87.19.Hh, 05.45.Gg, 82.40.Ck
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The propagation of a wave of action potential arou
a closed electrical circuit in the heart is one of the old
mechanisms known to produce tachycardia, an abnorm
rapid, albeit periodic, heart beat which is not controll
by the heart’s natural pacemaker cells. Circulation c
take place along a narrow ringlike pathway of active tiss
surrounding a large obstacle, such as a vein or a la
infarct (region of dead tissue resulting from a prior he
attack) [1]. It can also occur in the form of a spiral wav
rotating in a large region of tissue, with the wave tip
the spiral meandering freely or being anchored on a sm
obstacle.

In recent years, it has become recognized that th
waves can undergo various instabilities that can prod
more complex arrhythmia and potentially induce ve
tricular fibrillation [2]. From a clinical standpoint, it is
therefore desirable to develop means to control these
stabilities using a finite number of electrodes implanted
the heart. Ideally, each electrode should deliver a sm
current comparable to the stimulus necessary to exci
cell, thereby avoiding the massive electrical shock of
implanted defibrillator.

In this Letter we present a scheme to control a gene
oscillatory instability of cardiac excitation waves known
produce complex rhythms [3–5] and spiral wave breaku
[6,7] at short circulation periods. Recent studies have
cused on thetemporal control of this instability in the
atrioventricular nodal system [8–10]. In this context,
was shown that electrical alternans, the characteristic a
nation of long and short action potential durations (APD
associated with this instability, could be successfully su
pressed using a global feedback scheme, and the feasib
of this scheme was demonstrated by Hallet al. [9] in an ex-
periment. Here we focus on thespatiotemporal control of
this instability in spatially extended geometries where t
resulting wave dynamics is more complex. We inves
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gate the control of a pulse circulating in a one-dimension
(1D) ring of tissue, with alternans that are quasiperiod
cally modulated [3,4] or spatiotemporally chaotic [5], an
of a spiral wave breakup induced by alternans in a 2D ti
sue. In both geometries, our scheme is able to prevent
instability to occur and to maintain stable periodic circula
tion with a vanishingly small control current.

Following standard cable theory, the propagation
electric waves in cardiac tissues can be described by

dV
dt

� D DV 2 Iion�Cm , (1)

where V is the transmembrane potential (mV),D �
1 cm2�sec is the diffusion constant, andCm � 1 mF�cm2

is the membrane capacitance.Iion�mA�cm2� is the total
membrane current density and describes the influx a
efflux of ions through various ionic channels. Existin
cardiac models differ in their description ofIion. To
demonstrate the robustness of our control scheme
study two different models in this Letter. One mode
the Beeler-Reuter (BR) model [11], is a detailed cardia
model in which Iion is the sum of four currents. The
other model is a simplified two-variable (2V) model [6
with a fast variable that represents the membrane volta
and a slow variable that represents an effective membra
conductance [12]. The advantage of the latter model
that it incorporates the restitution property of cardiac cel
(defined below) which is the cause of electrical alternan

Our control method is based on applying a small contr
current, Icon, at a finite number,Nc, of equally spaced
“controlled cells” in a tissue ofN resistively coupled cells.
Let us first consider the simplest case (Nc � N � 1)
of an isolated periodically paced cell for which Eq. (1
reduces to

dV
dt

� Vs

X̀

n�0

d�t 2 nT � 2 �Iion 1 Icon��Cm . (2)
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The sum on the right-hand side of Eq. (2) represents
the sequence of pacing stimuli at period T where Vs �
10 20 mV is the stimulus which must be large enough
to excite a cell and Icon �mA�cm2� is the control current.
The motivation for first examining Eq. (2) is that it has
the same period doubling bifurcation as a pulse circulating
in a ring in the limit where the propagation speed of the
wave front is constant in time. In this limit, space and
time are effectively decoupled and each cell in the ring
is reexcited at each passage of the wave front at a fixed
period T � L�c, where L is the ring perimeter and c is
the speed of the wave front. Without control (Icon �
0), the sequence, APDn, of action potential durations
generated by Eq. (2) can be described by the map [13,14]:

APDn11 � F�T 2 APDn� , (3)

where APD � F�DI� is the APD restitution curve that
relates the action potential duration with the diastolic
interval (DI), which is the interval between the time
at which the action potential is initiated and the end
of the previous action potential. This curve, to which
the 2V model can be fitted, typically increases with
DI, at short DI, and saturates to a constant value at
large DI. Physiologically, this reflects the fact that the
pulse duration is shorter when the cells are reexcited
before recovering their resting state. The map looses its
stability when the slope of the restitution curve is larger
than one [13,14] as can be seen by linearizing Eq. (3)
around the fixed point defined by APD� � F�DI��, where
DI� � T 2 APD�. Letting APDn � APD� 1 dAPDn,
one obtains dAPDn11 � 2F0�DI��dAPDn, which shows
that the bifurcation occurs when F0�DI�� . 1.

Our control scheme should stabilize not only the
unstable fixed point of the map, as in previous works
[8–10], but must also be generalizable to spatiotemporal
control in a higher dimension. To this end we use a
nonlinear version, with a “switch,” of a linear feedback
scheme that has been successfully implemented in a
variety of different systems [15]. It consists of comparing
the present state of the system to the state at a time t in
the past. This is accomplished by choosing

Icon � g���V �t� 2 V �t 2 t����Q���V �t� 2 V �t 2 t���� , (4)

where the delay time t � T for the paced cell, and g is
a control parameter in mS�cm2. One important property
of this scheme is that Icon is only nonzero transiently and
vanishes in the controlled state where V �t� is a periodic
function with period T . The Heaviside step function,
defined by Q�x� � 1 for x $ 0 and Q�x� � 0 for x , 0
acts as a switch which turns on the feedback current
only during the repolarizing phase of the action potential.
This switch is not necessary to achieve control for the
paced cell or the circulating pulse in the 1D ring. Our
experience has shown, however, that it is necessary to
control spiral wave breakup in 2D. Without the switch,
cells become excited by the control current for large
enough g, which promotes instability. The switch enables
us to use larger values of g without exciting cells.

To see why this scheme stabilizes the map defined
by Eq. (3), let us assume that at the nth 1 1 stimu-
lus, APDn11 . APDn, which in turn implies that
V �t� . V �t 2 T �. Therefore, according to Eq. (4),
the control current will be switched on and lead to a
faster repolarization of the membrane at a rate pro-
portional to V �t� 2 V �t 2 T � � APDn11 2 APDn.
This will reduce APDn11 by an amount proportional to
APDn11 2 APDn and lead to the incremental change near
the fixed point, dAPDn11 � 2d�APDn11 2 APDn�;
or, equivalently, dAPDn11 � GdAPDn, where G is
some effective control parameter that should be pro-
portional to g, for small g. Adding this contribution
to the change of APD resulting from restitution, we
obtain that dAPDn11 � �2F0�DI�� 1 G�dAPDn. At
the next stimulus, the control current will be switched
off because dAPDn12 , dAPDn11, and therefore
dAPDn12 � 2F0�DI��dAPDn11. Combining the above
two expressions, we obtain the linearized map near the
fixed point

dAPDn12 � F0�DI�� �F0�DI�� 2 G�dAPDn . (5)

The condition for control to be achieved is that this map
be stable, which yields G . Gc, where Gc � �F0�DI��2 2

1��F0�DI��. We have verified numerically for the 2V ionic
model defined below that G is independent of T for a
large range of values and that G � g for small g. Thus,
control requires g . gc, where gc � Gc � �F0�DI��2 2

1��F0�DI��.
Let us now extend this scheme to spatiotemporal con-

trol of waves described by Eq. (1) with Iion replaced by
Iion 1 Icon. In the 1D ring, the Laplacian is discretized in
the form DV � �Vi11 1 Vi21 2 2Vi��dx2, where x �
idx measures the position along the ring of perimeter
L � Ndx, and we impose the periodic boundary condi-
tion VN11 � V1. Icon, defined by Eq. (4), is applied at
a subset of Nc equally spaced points along the ring, and
Icon � 0 at the other points. In the 2D tissue, we use a
square lattice of spacing dx with zero-flux boundary con-
ditions at the edges and the discretized Laplacian DV �
�Vi11j 1 Vi21j 1 Vij11 1 Vij21 2 4Vij��dx2. Icon is
applied on a square superlattice of spacing l � mdx, re-
sulting in Nc � �N�m�2 control points with the first point
placed at (i � 1, j � 1). One difficulty, present in both
geometries, is that the period T of unstable pulse circula-
tion or spiral rotation is not known a priori. To overcome
this problem, we choose t equal to the average of the last
two circulation periods at one point in the tissue (the po-
sition of this point is not essential). For this, we store the
sequence of times, tn, at which the membrane is depolar-
ized (i.e., V exceeds some threshold value) at this point,
and set t � �tn 2 tn22��2 in Eq. (4) at all control points
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during the interval, tn # t # tn11. We find that using
this scheme t relaxes to T after a few periods and Icon

vanishes in the final controlled state [16].
Results that illustrate control in the ring are shown in

Fig. 1 for the BR and 2V models. Control in the 2D
tissue is illustrated in Fig. 2 where we have purposely
restricted our simulations to the 2V model in order to
avoid the meander of the wave tip [7], which does
not occur simultaneously with alternans in this model
[6]. We expect that similar results would be obtained
in a higher-order ionic model if the spiral wave tip is
anchored on a small obstacle and does not meander. The
equations were integrated using a simple Euler scheme
with dt � 0.05 ms and dx � 0.037 cm in the 2V model,
and dt � 0.02 ms and dx � 0.0262 cm in the BR model.

Figure 1 shows that the control scheme is robust and
does not depend on a particular choice of model. We
have also applied our scheme to a modified BR model
developed by Qu et al. [5], which displays spatiotem-
poral chaos in a ring due to a nonmonotonic restitution
curve. Using their model with the parameter a � 0.75 of
Ref. [5], we verified that our control scheme can termi-
nate the spatiotemporal chaotic oscillations of APD and
force periodic circulation.

In Fig. 2, a stable spiral with a period of 200 ms was
first created on a 200 3 200 (7.4 cm 3 7.4 cm) lattice
for S � 1.8 (where S is defined in [12]). S was then
increased abruptly to a value (S � 2.4) where, without
control, the spiral is unstable and breaks up after a few
rotations. In contrast, with control turned on one period
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FIG. 1. Plots illustrating the control of a 1D pulse circulating
in a ring for the 2V model with restitution [(a) and (b)]
and the BR model [(c) and (d)]. For the 2V model,
the ring perimeter L � 4.26 cm, Nc�N � 0.026, and g �
1.5 mS�cm2, and for the BR model, L � 11.8 cm, Nc�N �
0.033, and g � 0.6 mS�cm2. The APD is plotted as a function
of the turn number in the ring in (a) and (c). Control is
switched on at the turn number indicated by the arrows. The
control current is plotted vs time in (b) and (d) with t � 0
corresponding to the start of control.
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after the increase in S, the APD oscillations along the
spiral arm are damped out and breakup is prevented. In
addition, Figs. 1(b) and 1(d) demonstrate that a relatively
small control current is necessary to achieve control. The
maximum control current during the transient relaxation
to the periodic state is about 5 times the maximum value
of Iion during membrane repolarization in both models
(�5 mA�cm2) and about 1 order of magnitude smaller
than the maximum value of Iion during depolarization in
the BR model (�135 mA�cm2).

The minimum control current, Im, and the time, tc,
required to achieve control depend sensitively on the
number of control points. We define Im to be the peak
oscillation amplitude of Icon during the transient after
control is turned on, for the smallest g necessary to
achieve control (i.e., to reach steady-state rotation in some
arbitrary long time). Figure 3 shows clearly that Im �
1�Nc in 1D. Remarkably, this scaling implies that the
wave instability can be suppressed if NcIm exceeds some
threshold value, independently of whether the electrodes
are equally spaced along the ring or regrouped in one
segment, which we have checked numerically. As a
result, control can be achieved in 1D with only one
localized segment of controlled cells. The control time,

FIG. 2. Grey scale plot of voltage activity in a 2D tissue
obtained by simulation of the 2V model without control after
ten rotations (left), and with control in steady-state rotation
(right) using Nc�N � 0.0016 and g � 32 mS�cm2.
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FIG. 3. Plot of Im vs Nc�N for the different models in 1D
and 2D. The straight lines are guides to the eye with a
slope 21.

however, depends on how the electrodes are placed along
the ring. To investigate this, we have defined tc to be
the time necessary for the amplitude, jAPDn11 2 APDnj,
of APD oscillations to decay to a small value d after
control is turned on. We find that for a fixed g and Nc

control points equally spaced along the ring, tc is roughly
Nc times smaller than with all points regrouped in one
segment.

In 2D, Fig. 3 shows that Im scales only as 1�Nc for
large Nc. There are two distinct limiting factors present
in 2D that are responsible for this difference. The first is
that control must be achieved before breakup occurs, such
that tc must be less than the characteristic amplification
time of the instability (a few rotations). Since we find
that tc decreases with increasing Nc in both 1D and 2D,
this sets a lower bound on Nc in 2D. A similar bound
is also present in 1D if we require that the amplitude of
APD oscillations reaches some small desired value in a
finite number of rotations. The second limiting factor in
2D is that the electrode spacing, l, must be comparable or
smaller than the spiral wavelength, l. This second factor
causes Im to increase rapidly at small Nc towards a range
which is not practically interesting.

It would be interesting to test the present scheme
experimentally in rings and sheets of tissue preparations.
An array of electrodes that essentially performs the
algorithm presented in this Letter (measure the potential,
compare it to a previous potential and, if need be, deliver a
small current) should be able to control wave instabilities.
In rings, only one or a few electrodes should be required.
In sheets, control of an anchored spiral wave should be
possible with a coarse mesh of electrodes spaced about
1 cm apart. Since the control current is very small, the
damage to the tissue should be minimal which would
make the scheme interesting from a clinical point of view.
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