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Spatiotemporal Control of Wave Instabilitiesin Cardiac Tissue
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Electrical waves circulating around an obstacle in cardiac tissue are subject to a generic oscillatory
instability. In a one-dimensional ring geometry this instability can produce both quasiperiodic and
spatiotemporally chaotic oscillations while in a two-dimensional sheet of cardiac tissue it can lead to
spiral wave breakup. We present a control scheme to prevent this instability in these two geometries
which is based on applying a feedback current at a discrete set of control points during the repolarizing
phase of the action potential. The feasibility of this scheme is demonstrated via simulations of a two-
variable model of excitable media with restitution and of the Beeler-Reuter model of ventricular action
potential.

PACS numbers: 87.19.Hh, 05.45.Gg, 82.40.Ck

The propagation of a wave of action potential aroundgate the control of a pulse circulating in a one-dimensional
a closed electrical circuit in the heart is one of the oldes{1D) ring of tissue, with alternans that are quasiperiodi-
mechanisms known to produce tachycardia, an abnormallyally modulated [3,4] or spatiotemporally chaotic [5], and
rapid, albeit periodic, heart beat which is not controlledof a spiral wave breakup induced by alternans in a 2D tis-
by the heart’'s natural pacemaker cells. Circulation carsue. In both geometries, our scheme is able to prevent the
take place along a narrow ringlike pathway of active tissuénstability to occur and to maintain stable periodic circula-
surrounding a large obstacle, such as a vein or a largéon with a vanishingly small control current.
infarct (region of dead tissue resulting from a prior heart Following standard cable theory, the propagation of
attack) [1]. It can also occur in the form of a spiral wave electric waves in cardiac tissues can be described by

rotating in a large region of tissue, with the wave tip of dv ion
the spiral meandering freely or being anchored on a small o ~PAav -1 /Cm s 1)
obstacle.

S\e'(here V is the transmembrane potential (mVR =
écmz/sec is the diffusion constant, adt}, = 1 uF/cn?
IS the membrane capacitancé°"(uA/cn?) is the total

In recent years, it has become recognized that the
waves can undergo various instabilities that can produc

more complex arrhythmia and potentially induce ven- ) g .
b y b y membrane current density and describes the influx and

tricular fibrillation [2]. From a clinical standpoint, it is fl f h h vari onic eh ls. Existi
therefore desirable to develop means to control these i ux Of 1ons through varlous onic channets. EXIStng

stabilities using a finite number of electrodes implanted or?arOIIaC models differ in their description dfe,. To

the heart. Ideally, each electrode should deliver a Smaﬁlemonstrate' the robustness of our control scheme we
current comparable to the stimulus necessary to excite fudy two different models in this L_etter. Qne mOd‘?"
cell, thereby avoiding the massive electrical shock of arfne Begler-R_euter (B_R) model [11], is a detailed cardiac
implanted defibrillator. model in whichr;,, is the sum of four currents. The

In this Letter we present a scheme to control a generi(?t.her mode| is a simplified two-variable (2V) model [6]
oscillatory instability of cardiac excitation waves known to with a fast variable that represents the membrane voltage

. nd a slow variable that represents an effective membrane
produce complex rhythms [3—5] and spiral wave breakup§1 X
[6,7] at short circulation periods. Recent studies have foponductance [12]. The advantage of the latter model is

cused on thetemporal control of this instability in the that it incorporates the restitution property of cardiac cells
atrioventricular nodal system [8—10]. In this context, it (defined below) which is the cause of electrical alternans.

was shown that electrical alternans, the characteristic alter- Ourtc?cnotlol Teﬂ}‘?qt's baset()j on app1lty|ng a”small cor:jtrol
nation of long and short action potential durations (APDS)E:urren 170, A ,,? Inite_number\, of equally space
controlled cells” in a tissue aW resistively coupled cells.

associated with this instability, could be successfully sup- i i .

pressed using a global feedback scheme, and the feasibili t us first consn_jer_ the simplest cas¥.(= N = 1)

of this scheme was demonstrated by Hall. [9] in an ex- f an isolated periodically paced cell for which Eq. (1)
periment. Here we focus on tlspatiotemporal control of reduces to "
this instability in spatially extended geometries where the 4V _ v Z 5(t — nT) — (I + 1°")/C )
resulting wave dynamics is more complex. We investi-  dt i) "
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The sum on the right-hand side of Eq. (2) represents
the sequence of pacing stimuli at period T where V, ~
10—-20 mV is the stimulus which must be large enough
to excite a cell and 7°°" (uA/cm?) is the control current.
The motivation for first examining Eqg. (2) is that it has
the same period doubling bifurcation as a pulse circulating
in aring in the limit where the propagation speed of the
wave front is constant in time. In this limit, space and
time are effectively decoupled and each cell in the ring
is reexcited at each passage of the wave front at a fixed
period T = L/c, where L is the ring perimeter and ¢ is
the speed of the wave front. Without control (7°°" =
0), the sequence, APD,, of action potentia durations
generated by EqQ. (2) can be described by the map [13,14]:

APD, 4+ = F(T — APD,), (3)

where APD = F(DI) is the APD restitution curve that
relates the action potential duration with the diastolic
interval (DI), which is the interval between the time
a which the action potential is initiated and the end
of the previous action potential. This curve, to which
the 2V model can be fitted, typically increases with
DI, a short DI, and saturates to a constant value at
large DI. Physiologicaly, this reflects the fact that the
pulse duration is shorter when the cells are reexcited
before recovering their resting state. The map looses its
stability when the slope of the restitution curve is larger
than one [13,14] as can be seen by linearizing Eq. (3)
around the fixed point defined by APD* = F(DI*), where
DI* =T — APD*. Letting APD, = APD* + §APD,,
one obtains APD,,.; = —F'(DI")8APD,,, which shows
that the bifurcation occurs when F/(DI*) > 1.

Our control scheme should stabilize not only the
unstable fixed point of the map, as in previous works
[8—10], but must also be generalizable to spatiotemporal
control in a higher dimension. To this end we use a
nonlinear version, with a “switch,” of a linear feedback
scheme that has been successfully implemented in a
variety of different systems[15]. It consists of comparing
the present state of the system to the state at atime 7 in
the past. Thisisaccomplished by choosing

" =y(V(@) — V(@ — 7)0WV(E) — V(e — 1), (4

where the delay time 7 = T for the paced cell, and vy is
a control parameter in mS/cm?. One important property
of this scheme is that 7°°" is only nonzero transiently and
vanishes in the controlled state where V() is a periodic
function with period T. The Heaviside step function,
defined by ®(x) = 1forx =0and ®(x) = 0forx <0
acts as a switch which turns on the feedback current
only during the repolarizing phase of the action potential.
This switch is not necessary to achieve control for the
paced cell or the circulating pulse in the 1D ring. Our
experience has shown, however, that it is necessary to
control spiral wave breakup in 2D. Without the switch,

cells become excited by the control current for large
enough vy, which promotes instability. The switch enables
us to use larger values of y without exciting cells.

To see why this scheme stabilizes the map defined
by Eg. (3), let us assume that at the nth + 1 stimu-
lus, APD,+; > APD,,, which in turn implies that
V() > V(t — T). Therefore, according to Eg. (4),
the control current will be switched on and lead to a
faster repolarization of the membrane at a rate pro-
portiona to V() — V(r —T)~ APD,+; — APD,.
This will reduce APD,,+; by an amount proportional to
APD, ;1 — APD, and lead to the incremental change near
the fixed point, 6APD,+; ~ —8(APD,+; — APD,);
or, equivaently, §APD,+; = I'6APD,, where T is
some effective control parameter that should be pro-
portional to vy, for small y. Adding this contribution
to the change of APD resulting from restitution, we
obtain that SAPD,.; = [—F'(DI*) + T']6APD,. At
the next stimulus, the control current will be switched
off because SAPD, .+, < §APD,.;, and therefore
8APD,, = —F/(DI*)6APD,+;. Combining the above
two expressions, we obtain the linearized map near the
fixed point

S8APD, ., = F'(DI")[F'(DI") — T]SAPD,. (5)

The condition for control to be achieved is that this map
be stable, which yieldsI" > I, where I'. = [F/(DI*)* —
1]/F'(DI"). Wehave verified numerically for the 2V ionic
model defined below that I' is independent of 7 for a
large range of values and that I ~  for small v. Thus,
control requires y > ., where y. ~ I'. ~ [F/(DI*)? —
1]/F'(DI").

Let us now extend this scheme to spatiotemporal con-
trol of waves described by Eq. (1) with 7'°" replaced by
[°on + Jeon Inthe 1D ring, the Laplacian is discretized in
the form AV = (V, 1, + Vi_; — 2V;)/dx?, where x =
idx measures the position along the ring of perimeter
L = Ndx, and we impose the periodic boundary condi-
tion Vy4, = V. 1", defined by Eq. (4), is applied at
a subset of N, equally spaced points along the ring, and
[°" = 0 at the other points. In the 2D tissue, we use a
sguare lattice of spacing dx with zero-flux boundary con-
ditions at the edges and the discretized Laplacian AV =
(Vi+1j + Vi—lj + Vij+1 + Vij—l — 4Vij)/dx2. I s
applied on a square superlattice of spacing / = mdx, re-
sulting in N, = (N/m)? control points with the first point
placed a (i = 1,j = 1). One difficulty, present in both
geometries, is that the period T of unstable pulse circula-
tion or spiral rotation is not known a priori. To overcome
this problem, we choose 7 equal to the average of the last
two circulation periods at one point in the tissue (the po-
sition of this point is not essential). For this, we store the
sequence of times, t,,, at which the membrane is depolar-
ized (i.e.,, V exceeds some threshold value) at this point,
andset 7 = (¢, — 1,-2)/2 in Eq. (4) at dl control points
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during the interval, ¢, =t < 1,+,. We find that using
this scheme 7 relaxes to T after a few periods and 7°°"
vanishes in the final controlled state [16].

Results that illustrate control in the ring are shown in
Fig. 1 for the BR and 2V models. Control in the 2D
tissue is illustrated in Fig. 2 where we have purposely
restricted our simulations to the 2V model in order to
avoid the meander of the wave tip [7], which does
not occur simultaneously with alternans in this model
[6]. We expect that similar results would be obtained
in a higher-order ionic model if the spiral wave tip is
anchored on a small obstacle and does not meander. The
equations were integrated using a simple Euler scheme
with dr = 0.05 msand dx = 0.037 cm in the 2V model,
and dr = 0.02 msand dx = 0.0262 cm in the BR model.

Figure 1 shows that the control scheme is robust and
does not depend on a particular choice of model. We
have aso applied our scheme to a modified BR model
developed by Qu et al. [5], which displays spatiotem-
poral chaos in a ring due to a honmonotonic restitution
curve. Using their model with the parameter a = 0.75 of
Ref. [5], we verified that our control scheme can termi-
nate the spatiotemporal chaotic oscillations of APD and
force periodic circulation.

In Fig. 2, a stable spiral with a period of 200 ms was
first created on a 200 X 200 (7.4 cm X 7.4 cm) lattice
for S = 1.8 (where S is defined in [12]). S was then
increased abruptly to a value (S = 2.4) where, without
control, the spiral is unstable and breaks up after a few
rotations. In contrast, with control turned on one period

250
_ | @ e |30
@ 200
E 200
[a] |
o
& 150 4 100
100 : : : : : 0
0 50 100 0 20 40 60
Oscillation number
S HLLCCR e
-5
e (b) (d)
o
< s
25 : : : :
0 10 20 0 2 4 6

time (s)

FIG. 1. Plotsillustrating the control of a 1D pulse circulating
in a ring for the 2V model with restitution [(a) and (b)]
and the BR modd [(c) and (d)]. For the 2V model,
the ring perimeter L = 4.26 cm, N./N = 0.026, and y =
1.5 mS/cm?, and for the BR model, L = 11.8 cm, N./N =
0.033, and y = 0.6 mS/cm?. The APD is plotted as a function
of the turn number in the ring in (@) and (c). Contral is
switched on at the turn number indicated by the arrows. The
control current is plotted vs time in (b) and (d) with r =0
corresponding to the start of control.
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after the increase in S, the APD oscillations aong the
spiral arm are damped out and breakup is prevented. In
addition, Figs. 1(b) and 1(d) demonstrate that a relatively
small control current is necessary to achieve control. The
maximum control current during the transient relaxation
to the periodic state is about 5 times the maximum value
of I'°" during membrane repolarization in both models
(=5 nA/cm?) and about 1 order of magnitude smaller
than the maximum value of 7'°" during depolarization in
the BR model (=135 uA/cm?).

The minimum control current, I,,, and the time, ¢,
required to achieve control depend sensitively on the
number of control points. We define I, to be the peak
oscillation amplitude of 7°°" during the transient after
control is turned on, for the smallest y necessary to
achieve contral (i.e., to reach steady-state rotation in some
arbitrary long time). Figure 3 shows clearly that I,, ~
1/N. in 1D. Remarkably, this scaling implies that the
wave instability can be suppressed if N .1, exceeds some
threshold value, independently of whether the electrodes
are equally spaced along the ring or regrouped in one
segment, which we have checked numerically. As a
result, control can be achieved in 1D with only one
localized segment of controlled cells. The control time,

FIG. 2. Grey scae plot of voltage activity in a 2D tissue
obtained by simulation of the 2V model without control after
ten rotations (left), and with control in steady-state rotation
(right) using N./N = 0.0016 and y = 32 mS/cn?’.
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FIG. 3. Plot of I,, vs N./N for the different models in 1D
and 2D. The straight lines are guides to the eye with a
slope —1.

however, depends on how the electrodes are placed along
the ring. To investigate this, we have defined 7. to be
the time necessary for the amplitude, |APD,+; — APD, |,
of APD oscillations to decay to a small value & after
control is turned on. We find that for a fixed y and N,
control points equally spaced along the ring, ¢, is roughly
N, times smaller than with all points regrouped in one
segment.

In 2D, Fig. 3 shows that 7,, scales only as 1/N,. for
large N.. There are two distinct limiting factors present
in 2D that are responsible for this difference. Thefirst is
that control must be achieved before breakup occurs, such
that ¢z, must be less than the characteristic amplification
time of the instability (a few rotations). Since we find
that 7. decreases with increasing N, in both 1D and 2D,
this sets a lower bound on N. in 2D. A similar bound
is also present in 1D if we require that the amplitude of
APD oscillations reaches some small desired value in a
finite number of rotations. The second limiting factor in
2D isthat the electrode spacing, I, must be comparable or
smaller than the spiral wavelength, A. This second factor
causes I, to increase rapidly at small N, towards a range
which is not practically interesting.

It would be interesting to test the present scheme
experimentally in rings and sheets of tissue preparations.
An array of electrodes that essentialy performs the
algorithm presented in this Letter (measure the potential,
compareit to a previous potentia and, if need be, deliver a
small current) should be able to control wave instabilities.
In rings, only one or a few electrodes should be required.
In sheets, control of an anchored spira wave should be
possible with a coarse mesh of electrodes spaced about

1 cm apart. Since the control current is very smal, the
damage to the tissue should be minimal which would
make the scheme interesting from a clinical point of view.
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