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We study numerically the dynamics of conduction blocks using a detailed electrophysiological model. We
find that this dynamics depends critically on the size of the paced region. Small pacing regions lead to
stationary conduction blocks while larger pacing regions can lead to conduction blocks that travel periodically
towards the pacing region. We show that this size-dependence dynamics can lead to a novel arrhythmogenic
mechanism. Furthermore, we show that the essential phenomena can be captured in a much simpler coupled-
map model.
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I. INTRODUCTION

The coupling of the electrical excitation to the contractile
forces in the heart is essential to the blood supply to the
body. Abnormal electrical activity, in particular arrhythmias,
can have dire consequences. The most serious of all, ven-
tricular fibrillation sVFd, is characterized by disordered elec-
trical activity within the ventricles and leads to death within
minutes.

Unfortunately, the precise cause of the onset and mainte-
nance of VF remains elusive. It is believed, however, that
electrical wave reentry plays an important role. Reentry is
initiated when an electrical wave is locally blocked, leading
to a broken wave front that can reexcite the tissue behind the
conduction block. There are several ways to create a conduc-
tion block. Perhaps the most intuitive one is an anatomical
tissue heterogeneity through which the electrical wave fails
to propagatef1,2g. Although these heterogeneities exist and
play a role in the initiation of VF, recently a new mechanism
for conduction block in perfectlyhomogeneoustissue has
been described in modelsf3–5g and experimentsf6,7g. A key
contributor to thisdynamicalheterogeneity is electrical alter-
nans, which is characterized by a beat to beat oscillation in
the action potential durationsAPD, defined belowd under
rapid pacing conditions. Clinically, the occurrence of T wave
alternans in ECGs has been associated with sudden cardiac
arrestf8,9g. In isolated cells, the onset of alternans can be
determined from the restitution curve which relates the APD
to the diastolic intervalsDId, the time interval between two
successive action potential. If this curve has a slope larger
than 1, it is easy to see that a period doubling bifurcation
develops, resulting in an APD that is alternatingly short and
long f10,11g. This simple vision, however, is most likely not
complete as memory effectsf12g and calcium cycling effects
f13,14g have been shown to play a role in the mechanism
leading to alternans.

In the case of spatially extended systems, the possible
dynamical behavior becomes more complicated. The con-
duction velocity also depends on the DI, which can lead to a

spatial modulation of the alternans, called discordant altern-
ansf3,4g. During discordant alternans, the APD is following
a long-short-long pattern in one region of the cable and a
short-long-short pattern in another. Separating these regions
are nodes where the APD is constant. They can be either
stationary or traveling. In addition, during discordant altern-
ans, the amplitude of the alternanssthe difference between
APDs in subsequent beatsd can grow when moving away
from the pacing site. Hence, at a critical distance, provided
the amplitude of alternans is large enough, the tissue can no
longer support a traveling wave for each excitation and a
diffusive conduction blockf15g develops: a wave will propa-
gate over a given distance along the cable and will then come
to a stop.

Here, we study the dynamics of the conduction blocks
using a detailed electrophysiological model and a pacing do-
main of variable size. We present a quantitative and qualita-
tive description of the observed patterns and present results
from numerical experiments in cables and sheets of cardiac
tissue. Our main results aresid in addition to a stationary
conduction block, rapid pacing can lead to periodic patterns
of moving conduction blocks,sii d the type of conduction
block is critically dependent on the size of the pacing region,
and siii d these effects combined can lead to a novel mecha-
nism for reentry. Furthermore, we show that a simple
coupled-map model gives qualitatively similar results.

II. MODELING OF A CABLE OF CARDIAC CELLS
AND TERMINOLOGY

To describe the electrophysiological properties of cardiac
tissue, we used the reaction-diffusion equation,

]tV = D¹2V − sSionI ion + Istimd/C, s1d

where V is the transmembrane potential,C=1 mF cm−2 is
the membrane capacitance,D¹2 with D=0.001 cm2 s−1, ex-
presses the intercellular coupling,I ion represents the different
transmembrane currents, andIstim is the applied pacing cur-
rent. The ionic currents inI ion are governed by nonlinear
evolution equations coupled toV, and here we have chosen
to use a modified version of the Luo-Rudy modelf16g to
describe these currents. A detailed description of this model
and our modifications are given in Appendix A. The integra-
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tion scheme we used was forward Euler with space and time
discretizations ofdx=0.025 cm anddt=0.02 ms, respec-
tively. Finally, the space constant was determined to be 0.06
cm.

The cable was paced at one end with a periodT through a
1-ms-long constant current stimulus ofIstim=−80 mA/cm2

f26g. The pacing domain consisted ofn grid points, wheren
was varied between 1 and 20, thus corresponding to a pacing
domain ranging in size from 0.025 cm to 0.5 cmf27g. As we
will see below, changing the number of stimulated grid
points can have a dramatic effect. On the other hand, chang-
ing the size of the simulation cable from 10 cm, the length
used here, to 5 cm did not reveal any qualitative differences.
This, along with the fact that the propagation speed from
endocardium to epicardium can be much smallersabout
17 cm/sd f17g than the one used heresabout 51 cm/sd, im-
plies that the observations reported here might be relevant to
human ventricles. Finally, additional simulations performed
using either a stronger stimulus or a longer stimulus showed
little effect.

We define the beginning of an action potential at position
x as the moment whenVsx,td crosses a threshold valueVth

from below. Similarly, the end of the action potential is de-
fined as the moment whenVsx,td decreases belowVth. The
APD is then defined as the time difference between these two
eventsssee Fig. 1d. Then, the DI is defined as the time be-
tween the end of one action potential and the beginning of
the nextssee Fig. 1d. A conduction block for themth stimulus
occurs at theith grid point when an action potential was
elicited at theith−1 grid point by themth stimulus but not at

the ith one. Vth was chosen to be equal to −60 mV and
changes in the value ofVth sbetween −80 mV and −50 mVd
did not affect results significantly. In addition, it is useful to
define a waveback and a wavefront. A wavefront is the
boundary between a region at rest and an excited region
when the latter region is invading the former, while the
waveback is the boundary when the former is invading the
latter.

The pacing periods used heres<160 msd are short com-
pared to the normal pacing period in humans. Of course, this
pacing period is dictated by the choice of the electrophysi-
ological model used here.

III. RESULTS IN A CABLE

Let us first consider a one-dimensional cable. For a small
enough pacing period, a period doubling instability to alter-
nans takes place. After a transient regime where the ampli-
tude of alternans grows, a steady state is reached. This re-
gime is characterized by the fact that each stimulus will elicit
an action potential all along the cable and that the action
potentials elicited by two successive stimuli at a given point
in space will have different durationssa short action potential
follows a long one which follows a short one, and so ond
f18g. This allows us to define, at a given point in spacex, the
amplitude of alternans,asx,md, for the mth stimulus as the
difference between the APD due to this stimulus and the
APD due to the previous stimulus multiplied bys−1dm so
that a does not change sign every stimulus. In the case of
concordant alternans,a is roughly constant in space and does
not change sign. In our simulations, however, since the size
of the simulated cable is bigger than the characteristic wave-
length of alternansf19g, we observe discordant alternans. In
this case,asx,md is not constant in space and changes sign
when going along the cable. For example, if a point in the
cable with positivea exhibits a sequence of beats that is long
short-long-short… then a point of the cable with negativea
will exhibit a sequence of beats that is short-long-short-
long… . Consequently, between regions of oppositea, there
is a point wherea=0, corresponding to an alternans node.

In the case of discordant alternans, one can observe two
distinct regimessseef19g for a full theoretical analysisd that
are characterized by the spatio-temporal evolution ofa. The
first regime, called standing alternans, is characterized by
stationary alternans nodes. This is shown in Fig. 2sa1d, where
we show a gray-scale space-time plot ofa. In contrast, the
alternans nodes in the second regime, called traveling-wave
alternans, are nonstationary and are traveling towards the
pacing site. This is illustrated in Fig. 2sa2d, which shows that
a is changing slowly in time with a given period. In addition,
in this regime,a=0 at the pacing site anduau increases when
moving away from the pacing site.

A change in the dynamics of the alternans nodes was ob-
served earlier in the theoretical study of Echebarria and
Karmaf19g. There, this change was accomplished by chang-
ing the properties of the tissuesi.e., by changing the modeld.
Here, in contrast, the only difference between the simulations
shown in Figs. 2sa1d and 2sa2d is the size of the pacing
region: n=6 in sa1d and n=10 in sa2d. This finding already

FIG. 1. Top: Schematic time course of the transmembrane po-
tential at a point during normal cardiac rhythmsi.e., without alter-
nansd. The diastolic intervalsDId is the period of time during which
the transmembrane potential is below a given value and the action
potential durationsAPDd is the period of time during which the
action potential is over this threshold value. Bottom: Schematic
drawing of the APD along the cable during an even beatssolid lined
and an odd beatsdashed lined in the discordant alternans regime. In
the case of normal cardiac rhythmsi.e., without alternansd, both
lines would be the same and the APD would be constant in space
fexcept at the pacing sitesthe end of the cabled where boundary
effects tend to lengthensshortend the APDg. In the case of concor-
dant alternans, the APD during successive beats would be different
but constant along the cablesapart from boundary effectsd.
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shows that the size of the pacing region may play a critical
role in the alternans-induced arrhythmias. A rationale for the
effect of changing the size of the pacing region will be given
later in the manuscriptsend of Sec. Vd.

Decreasing the stimulation period further leads to conduc-
tion blocks. In other words, some stimuli are not able to
create an action potential that propagates all along the cable.
Two different types of conduction blocks were observed:sid
conduction block at the pacing site; the stimulus is not able
to elicit an action potential at all andsii d conduction block
away from the pacing site; the stimulus creates an action
potential that begins to propagate along the cable and this
action potential fails to propagate at a given point in space
away from the pacing site. The latter type of conduction
block is illustrated in Figs. 2sb1d–2sb5d. Hence, a conduction
block can be characterized by the point in space where it
took place and also by the index of the stimulus that created
the action potential which failed to propagate at this point.

In our simulations, we found that the dynamics of the
conduction blocks depends on both the size of the paced
region and on the pacing period. Examples of the observed
dynamics of the conduction blocks are illustrated in Fig. 3,
where we plot the position of the conduction block as a
function of the pacing cycle number m. In Figs. 3sad and

3scd, the block occurs at a fixed locationseither away from
the pacing site or at the pacing sited once every other stimu-
lus si.e., a 2:1 rhythmd. Examples of more complex behavior
are illustrated in Figs. 3sbd and 3sdd where the location of the
conduction block is nonstationary and forms a periodic pat-
tern. In these cases, a conduction block forms at a certain
location away from the pacing site. In subsequent beats, the
position of this conduction block moves closer to the pacing
site sduring this regime every other stimulus is blockedd.
Eventually, the block disappears, after which no conduction
blocks are observed during several pacing cyclessi.e., propa-
gation with a discordant alternans patternd. Then, the conduc-
tion block reforms at precisely the same location as previ-
ously and the sequence restarts.

This gives rise to a periodic pattern of conduction blocks
with a certain “amplitude,” defined here as the distance be-
tween the site where the conduction block first forms and the
site where the conduction block disappears. We found that
this amplitude can take on values between 2 cmfsee Fig.
3sddg and 5 cmfsee Fig. 3sbdg and that for a given pacing
period, both the amplitude of the conduction block wave and
its period were dependent on the number of pacing grid
points. We also found that the trajectory of the conduction
blocks in Fig. 3sbd, which is close to the onset of conduction
blocks, is strikingly similar to the dynamic pattern of the
location of the alternans nodes shown in Fig. 2sa2d. These
alternans nodes also display periodic movement towards the
pacing site with slow movement followed by fast movement.
This movement is presumably due to the use of zero flux
boundary conditions, which favors the existence of an extre-
mum at the boundaries: slow movement corresponds to an

FIG. 2. sa1d andsa2d Gray-scale time-space plot of the alternans
amplitude uasx,mdu with black corresponding toasx,md=0 and
white corresponding to large values of the amplitude. The pacing
period in both figures is 162 ms and the number of pacing grid
points isn=6 in sa1d andn=10 in sa2d. In sa1d, one can see discor-
dant alternans where the nodes, regions of zero amplitudesand thus
in blackd, are not moving. Insa2d, the discordant alternans leads to
nodes that are traveling towards the pacing site.sb1d–sb5d: Succes-
sive profiles of Vsxd, taken at 20 ms intervals, during a conduction
block event. The waves are initiated on the left-hand side of the
cable. Insb1d, one can see an action potential propagating from the
left towards the right with its typical sharp wavefront. The smoother
waveback of the wave due to the previous stimulus is on the right-
hand side of the plot. The wavefront propagates faster than the
wave backfsb1d–sb3dg and finally reaches a region that has not yet
recovered and cannot be rapidly activated. Reaching this region
sb4d, the wave comes to a stop and fails to propagate furthersthis is
called throughout this paper a conduction blockd. In sb5d, one can
see that the sharp wavefront has disappeared. The cable is 10 cm
long and V ranges from −100 mV to 100 mV.

FIG. 3. Position of the conduction block as a function of the
stimulus number m for different pacing periodT sin msd and pacing
region sizesn. In sad, the inset shows that the conduction block
leads to a 2:1 rhythm. In bothsbd and sdd, the conduction block
travels towards the pacing site during a number of stimuli, followed
by a small number of stimuli during which there is no conduction
block. In sbd andsdd, the thick lines correspond to the stimuli where
no conduction block is observed. One should note the similarity
between the trajectories of conduction blocks forT=159 ms and
n=10 sn=6d and the trajectories of the alternans nodes for
T=162 ms andn=10 sn=6d shown in Figs. 2sa1d and 2sa2d.
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extremum of the alternans amplitude near the boundary
while fast movement corresponds to an alternans node near
the boundary. A phase diagram representing the nature of
conduction blocks as a function of the number of pacing grid
points and of the period is shown in Fig. 4. It is also worth
mentioning that the use of slightly irregular pacing times,
modeled via the inclusion of a noise term with a variance of
1 ms, did not change significantly the phase diagram.

IV. RESULTS IN A SHEET OF CARDIAC TISSUE

From the above, it should now be clear how a slight in-
homogeneity in the size of the pacing area can lead to reen-
try. Envision a 2D sheet of cardiac tissuefmodeled by Eq.
s1d using two space variables instead of oneg, paced from one
side by a domain containing two widths,n for the upper part
and n* for the lower part, as shown in Fig. 5. Neglecting
spatial coupling in the direction perpendicular of the wave
propagation, the lower and upper part of the tissue will see
waves originating from domains with different sizes. Reentry
should be possible when the spatial locations of the conduc-
tion blocks in the two domains are significantly different.
Then, the electrical wave will be blocked in one part of the
tissue while propagating normally in the other part, leading
to the excitation of the tissue behind the conduction block
and to reentry.

We can estimate the likelihood of reentry in 2D, paced by
domains of sizen andn* , based on our 1D results. Reentry is
likely when sid a cable paced withn shows a conduction
block while a cable paced withn* does not exhibit a conduc-
tion block, or vice versa, orsii d the difference in spatial lo-
cation between the conduction blocks in cables paced withn
and n* becomes large. We found that forn* =n±1, one or
both of these conditions were met in most of the phase space
for which conduction blocks occur away from the pacing site
si.e., filled circles in Fig. 4d. In most cases, the conditions
were met within a few hundred stimuli while occasionally a
larger number of stimuli was necessary.

Of course, the preceding arguments neglect spatial cou-
pling perpendicular to the wave-propagation direction. Nev-

ertheless, we found that the phase diagram was a valuable
predictor for the occurrence of reentry in full-scale 2D simu-
lations. A typical example of our 2D simulations, performed
using the same numerical scheme as in our one-dimensional
simulations, is displayed in Fig. 5, where we show a series of
gray-scale plots of the membrane potential, with black cor-
responding to repolarized tissue and white corresponding to
depolarized tissue. In this example, the width of the two
pacing domains differed by a single grid point:n* =8 versus
n=9. Both domains are paced with a constant period of 158
ms, leading to traveling conduction blocks with slightly dif-
ferent periodicity. During the roughly 100 first stimuli, the
position of the conduction block was nearly identical in the
upper and lower parts of the tissue. During the subsequent
stimulus, however, a wave block remains in the upper part of
the tissue butnot in the lower part of the tissue, which now
allows unblocked propagationfsee Figs. 3sbd and 3sddg. As

FIG. 4. Phase diagram showing the type of conduction block:
filled circles represent periodic conduction block waves, crosses
represent stationary conduction blocks at the pacing site, triangles
represent stationary conduction blocks away from the pacing site,
and filled boxes represent no conduction blocksi.e., discordant or
concordant alternans.d. T is expressed in ms.

FIG. 5. Series of gray-scale plots showing the birth of a spiral
wave. Timesshown in msd is arbitrarily set to 0 at the start of the
last stimulus. The gray scale represents the membrane potential val-
ues with white corresponding to maximum depolarization and black
corresponding to maximum repolarization. Att=0 ms, one can see
the wave elicited by the previous stimulus propagating from left to
right. Because of the discordant alternans, the APD differs strongly
across the sheet with the leftmost clear stripe corresponding to a
region where the APD is longsit is not a propagating wave despite
the cells in this region being depolarizedf15gd and the central dark
stripe corresponding to a region where the APD is short. At
t=100 ms, one can see on the left-hand side of the plot the wave
elicited by the next stimulus, while on the right-hand side one can
see the waveback of the wave seen in thet=0 ms frame. At
t=200 ms, a conduction block occurred in the top part of the sheet
while in the bottom part the wave was able to continue to propa-
gate. This partial wave block results in a broken wave front which
leads to the birth of reentry, as can be seen in thet=240 ms, 280
ms, and 320 ms frames. As this wave front curls and attempts to
reenter previously excited tissue with a long repolarization time
sgray stripe int=240 ms framed, it breaks up into two spiral tips
st=280 msd. Finally at t=760 ms, one can see that further instabili-
ties have led to a disordered activity similar to ventricular fibrilla-
tion. The geometry of the computational domain is also shown
schematically, where the gray region, exaggerated for clarity, corre-
sponds to the cells that are paced. The width of the bottom part of
this region isn* =8 and that of the top part isn=9 grid points.
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time progresses, the propagating wave in the lower part re-
enters the upper part behind the wave block, leading to a
spiral wave. For clarity, we have stopped stimulating the tis-
sue once the reentry appeared, although we have verified that
continuous stimulation also resulted in long-lasting reentry.
In addition, we have checked that smaller domains were also
able to produce reentry and that using a line of stimulation
with a thickness varying randomly can also lead to sustained
reentry.

V. COUPLED MAP MODEL

The results from the full ionic model can be reproduced
by a coupled map model similar to the ones used in previous
work f7,19g. To describe the dynamics of alternans nodes and
conduction blocks, we consider the following two fields:
Tupsx,nd, which is the time at which an action potential is
elicited in x due to thenth stimulus, andTrepsx,nd, which is
the time at which it ends. The equation for the repolarization
time Trep is the same for both the cable and the pacing do-
main,

Trepsx,nd = Tupsx,nd + APDfDIsx,ndg + j2¹2Trepsx,nd

+ w]xTrepsx,nd. s2d

The first two terms in this equation express the fact that a
single cell repolarizes at timeTup plus the duration of the
action potential. The latter is taken from the restitution curve
APDsDId. For the paced domain, this curve is calculated us-
ing a single cell while for the cable it is calculated 1 cm
away from the pacing domain, taken to be large. In this re-
gion of the cable, we found that the restitution curve was
minimally affected by the proximity of the pacing domain
and that the dispersion of repolarization due to alternans was
minimal. The two restitution curves are shown in Fig. 6sdd.
The last two terms take into account spatial effects: the dif-

fusion term indicates the perturbation due to intercellular
coupling swe consider here that the repolarization wave is a
phase wave and does not correspond to the propagation of a
wave backd and the last term expresses the asymmetry intro-
duced by the pacing at one end of the cablef19g. The length
scalesj and w were chosen here to reproduce the phase
diagram of Fig. 4 in a semiquantitative fashion.

The equation describingTup in the pacing domain is
Tupsx,nd=Tn, with Tn being the pacing period, while in the
cable it is given by

Tupsx,nd = Tn +E
0

x

dx8
1

cfDIsx8,ndg
, s3d

where c is the propagation speed of the wave front.
This propagation speed is a function of the DI, which itself
is of course a function ofx and is the difference between the
arrival of the nth action potential atx and the repolariza-
tion following the sn−1dth stimulus: DIsx,nd=Tupsx,nd
−Trepsx,n−1d.

The restitution curve also determined the occurrence of a
conduction block: we defined a conduction block to take
place when the restitution curve had no value for the dias-
tolic interval computed from Eq.s3d. In this case, we com-
puted the repolarization times between the origin and the
position of the conduction block using Eq.s2d along with
boundary conditionTrep=Tup at the site of the conduction
block. The repolarization time for the remainder of the cable
si.e., behind the conduction blockd was set to the repolariza-
tion time computed at the previous stimulus, except in a
small transition region, in size equal toj, immediately be-
hind the conduction block. There, a simple sigmoidal func-
tion was used that smoothly connected the repolarization
times on both sides of this region.

The reduced model is able to capture the essential features
of the full ionic model, including the striking dependence on
the size of the pacing region for both the alternans nodes and
the conduction blocks dynamics. The latter is shown in Figs.
6sad–6scd, where we plot the position of the conduction block
as a function of pacing cycle forw=0.025 andj2=0.04,
which are comparable to the values presented in Table I of
Ref. f19g when considering a full ionic model. All qualitative
features of Fig. 3 can be readily recognized, including trav-
eling conduction blocks with a large amplitudesad f28g, trav-
eling conduction blocks with a small amplitudescd, and sta-
tionary conduction block away from the pacing domainsbd.
Not shown here, but also found within the reduced model, is
a 2:1 conduction block at the pacing site. For the values ofw
and j employed here, the boundaries between the different
types of conduction block in the phase diagram derived from
the full model and the coupled-map model differed by at
most 5 ms.

Both the full ionic model and coupled map model show,
for certain pacing periods, a transition from stationary con-
duction blocks to traveling conduction blocks as the size of
the pacing domain is increased. Interestingly, a similar tran-
sition also occurs in the dynamics of alternans nodes when
one increases this size. To understand the effect of changing

FIG. 6. sad–scd Position of the conduction block as a function of
the stimulus for different pacing period and pacing region sizes
calculated using the coupled-map modelfsad T=161 ms, n=20;sbd
T=161 ms, n=10;scd T=156 ms, n=12g. In sad and scd, the thick
lines correspond to the stimuli where no conduction block is ob-
served.sdd The restitution curve used in the model for the single
elementssolid lined and for the cablesdashed lined. Note that the
slope of the single cell curve is smaller than the slope of the whole
cable curve.
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the size of the pacing region on the nature of alternans, we
consider the equation for the amplitudea of the alternans
derived inf19g,

]ta = sa −E
0

x

dx8
a

L
− w̃]xa + j̃ 2]xxa − ga3. s4d

Here,sa represents a linear growth term,ga3 is a nonlinear

restabilizing term, andL, w̃, and j̃ are length scales which
area priori different from the onesw andj used in Eqs.s2d
ands3d. The transition between traveling nodes in our simu-
lations slarge pacing domainsd and standing nodesssmaller
pacing domainsd can be understood when realizing the size
of the pacing domain dictates the boundary condition atx
=0 of Eq. s4d. Pacing a cable using a large piece of tissue
results in a pacing domain that essentially behaves as a
single isolated cell. If the restitution curve of a single cell
fsolid line in Fig. 6sbdg has a slope less than 1, this domain
will not display alternans and the amplitude equation needs
to be solved with boundary conditiona=0. For a smaller
pacing domain, however, spatial coupling becomes important
and the relevant restitution curve becomes steeperfdashed
line in Fig. 6sbdg, which can lead to alternans. Thus, for
smaller domains the relevant boundary condition for the am-
plitude equation is]xa=0. A standing-wave solution to the
amplitude equation can be described bya=a0 coss2plx
+fd, where 1/l is the separation between the nodes. This
solution swith a0Þ0d can only satisfy the]xa=0 boundary
condition andnot the a=0 boundary condition. This is easy
to see when one considers the standing-wave solution in Eq.
s4d at x=0: the only nonzero term on the r.h.s. is]xa which
requiresa02p /l=0 and finally a0=0. Hence, a standing-
wave solution is only possible for small pacing sizes, and
increasing the size of the pacing domain suppresses the
standing-wave solution. It is likely that this qualitative
change in the nature of allowed solutions underlies the tran-
sition between stationary to traveling blocks observed in the
ionic and coupled map model.

VI. DISCUSSION

To conclude, we have found that the spatio-temporal
structure of alternans and the dynamics of conduction blocks
is strongly influenced by both the size of the paced domain
and the pacing period. This dependence provides a novel
arrhythmogenic mechanism which we illustrate in a homo-
geneous two-dimensional sheet of tissue, paced by two do-
mains that vary slightly in size. The reentry is initiated
through pacing with a constant period and hence does not
require an abruptly changing pacing frequency nor a
symmetry-breaking change of location as in previous studies
f3g. We have found, using different ionic models, including a
detailed canine modelf7g and the simplified three-variable
Fenton-Karma modelf20,21g, that the results we present
here are partially model-dependent. This is perhaps not sur-
prising, as other arrhythmogenic mechanisms have been
show to depend on the details of the electrophysiological
modelf22g. Nevertheless, a reduced coupled map model was
able to reproduce, both qualitatively and, to some degree,

quantitatively, the results presented here. Consequently, we
expect that the dynamics of conduction blocks will depend
critically on the pacing protocol in a wide range of detailed
models.

Of course, the ultimate test should come in the form of
experimental studies similar to the one conducted by Foxet
al. f7g but with a varying in size stimulation region. It should
be possible to conduct quantitative studies of Purkinje fibers,
which conduct the electrical stimulus in an actual heart to the
ventricles and which penetrate the heart wall to varying
depths. These fibers can be isolated, resulting in linear
strands of cardiac tissuef7g. On the theoretical side, a further
extension of this work will be the formulation of a coupled
map model which takes into account the effects of coupling
transversely to the propagation direction of the wave.
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APPENDIX A: DESCRIPTION OF THE MODEL

The Luo-Rudy modelf16g, and its subsequent refinements
ssee, e.g.,f23gd, have been widely used either in their origi-
nal form or in modified forms in numerical studies of wave
propagation in cardiac tissuef24g. The model describes the
voltage and time dependence of the ionic currentsSionI ion
used in the equation for the transmembrane potentialV of a
single cell,

C
dV

dt
= − SionI ion, sA1d

whereC is the membrane capacitance. In the original Luo-
Rudy model, the total ionic current is given as

SionI ion = − sINa + Isi + IK + IK1 + IKp + Ibd, sA2d

where INa=GNam
3hjsV−ENad is the fast sodium current,Isi

=GsidfsV−Esid is the slow inward current representing the
L-type calcium current,IK=GKxx1sV−EKd is the time-
dependent potassium current,IK1=GK1K1`sV−EK1d is the
time-independent potassium current,IKp=GKpKpsV−EKpd is
the plateau potassium current, andIb=GbsV−Ebd is the back-
ground current. In these expressions,m, h, j , d, f, andx are
gating variables describing the opening and closing of ionic
channels and the dynamics of these variables is described by
nonlinear ordinary differential equations of the form
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dy

dt
=

y`sVd − y

tysVd
, sA3d

wherey represents one of the gating variables. Finally, the
equations for the currents are supplemented by an expression
for the calcium concentration,

fCagi

dt
= − 104Isi + 0.07s10−4fCagid. sA4d

Explicit expressions for the constants can be found in the
original work of Luo and RudysRef. f16gd. Here, we have
made two modifications to allow propagation of spiral waves
in a small system. First, we have reducedGsi from 0.09 to
0.055. Second, we have sped up the calcium dynamics by
altering the time scales of thed and f gates. Specifically,
both td andt f were multiplied by 0.8.

Initial conditions that were used consisted of a cable ini-
tially polarized that was then paced with decreasing intervals
between stimuli until the desired period was reached.
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f27g In order to check that our results are not due to a change in the
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