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Computational approach for modeling intra- and extracellular dynamics
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We introduce a phase-field approach for diffusion inside and outside a closed cell with damping and with
source terms at the stationary interface. The method is compared to exact salwtiens possibleand the
more traditional finite element method. It is shown to be very accurate, easy to implement, and computationally
inexpensive. We apply our method to a recently introduced model for chemotaxis by RappéBiophys. J.
83, 1361(2002].
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In dealing with free boundary problems, the so calledand satisfies zero-flux boundary conditions
phase-field approacHl] appears as a method of choice. It L
has successfully been applied to various problems ranging n-vVec=0.
from dendritic solidificatior[2], viscous fingerind3], crack ] )
propagatior{4], the tumbling of vesicleg5], and the propa- As a phase—ﬁeld we take a functhn that takes the vape
gation of electrical waves in the hed@]. In the spirit of =1 inside the cell and,,=0 outside the domain and var-
time-dependent Ginzburg-Landau models, the method avoid§S Smoothly across the interface. A possible choice in one
the tracking of the interface by introducing an auxiliary field dimension for a cell betweex= —a andx=a is
that locates the interface and whose dynamics is coupled to 1 1
the other physical fields through an appropriate set of partial d(X)= =+ =tanH (a—|x|)/&]. (1)
differential equations. In comparison to the more traditional 2 2
boundary integral methods, the method is much simpler t
implement numerically.

In this Brief Report we introduce a phase-field model for
intra- and extracellular dynamics, i.e., diffusion inside and 9 R R
outside a stationary, closed domain with source terms at the —(¢pu)=V-[D¢Vu]. (2
interface. We apply the method to a recently introduced at

model for the response of a Dictyostelium amogbgfol- We will come back to the rationale for the factegron the

lowing stimulation with the chemoattractant cyclic adenosinqeft_hand side. From here on we will be concerned with static
monophosphatécAMP) [8]. In Ref.[8], due to the need to rofiles 9¢p/3t=0, unless stated otherwise.
use a finite element method the numerical implementation o? our claim is rtow that inside the domain the fialdbe-

the model V\(/jas Ilrg_ltekd tztwo spf_:hce derl;eTSIOrli anithe ?_elll aves very similarly toc. Let us therefore first show, for
were treated as disks. As we will see below, the phase-fieldj, )icity in one dimension, that in the sharp interface limit

method is capable of faithfully capturing no-flux boundary one recovers the no-flux boundary condition. Integration of
conditions. Thus, it becomes feasible to investigate more reEq_ (2) over the interface yields

alistic cell shapes in three dimensions.

q’he variable¢ denotes the interface width. We then define a
field u that is to obey the equation

Before we introduce our approach, we like to point out até au au
some possible extensions of our methodology. The phase- f dX(f)E*—Da—
. . . afg X —a
field approach can be modified to include problems where x=a-¢

the domain boundary is not stationary. For example, forc%ince¢(a—§)w1 and(a+£)~0. From this we deduce
generation on cell membranes, leading to shape changes, can '

in principle be incorporated within the phase-field approach. Ju
This would require adding an additional equation for the X
phase field, but does not require the explicit calculation of a

boundary. We sho_uld stress that attempting to .model th| nd thus, in the sharp interface limit-0, the reflective
type of problem using conventional techniques, with eXpI'C'tboundary conditions are recovered.

boundary ft.raclfing, becorr;]es quite ClJItnbetsome: ¢ For a moving boundary the appropriate boundary condi-
Let us first introduce the most salient ingredients of oury, o areD (9u/dt)|y— o= — (da/dt)u. A generalization of

method. Our purpose is to describe the situation where SOM@a argument above wherés is time dependent gives
chemoattractant diffuses only inside the cell, i.e., its c_oncen—D(&u/aX”X_a(t): —(da/dt)u+0(&). Thus, also in the case
tration ¢ obeys. the following diffusion equation inside a of moving boundaries the appropriate boundary conditions
closed domain: are recovered in the sharp-interface limit.

On the other hand it is also clear that, whether the bound-
aries are moving or not, satisfies the diffusion equation
inside the domain wheré is constant.

X=a

Jc

—=DV?
at

c,
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FIG. 1. Comparison of our phase-field model with both analytic solution and finite element method. The equations are solved on a grid
of size 201X 201 with Euler's method, wittD =250, ro=5, Ax=0.1, andAt=5x10 6. The initial condition isc=1+ cos@rr/r). (a)
Spatial profile respectively d@t=0.004,t=0.01, andt=0.02 of the phase-field and analytic solution. Since the curves are hardly distin-
guishable, we mark the analytic solution by small circles and plot the difference of the profile®.8Xl in the inset. The relative error of
the phase field is seen to be smaller than 1%, being maximal at the boufdiiyne evolution of the concentration a5, r=3.37, and
r=1.66. The analytic solution is again marked by small circles.

Another interesting property of EQ) is that the quantity 2

2 - - o(r, =2, a,J (A, r)e Mt
J¢udx, which can be interpreted as the total concentration ' =~ S n '
inside the cell, is conserved under the dynamics. This is the
reason for the presence of the facthion the left-hand side where \, is defined as the smallest number for which
of Eq. (2), which is absent in one-sided phase-field model forJ,(\,a)=0 anda,, is the projection of the initial condition
solidification[9]. In fact, without this factorfudxwould be  on the set of Bessel functions. We also compare both fields
conserved but sinceleaks out of the cell, this does not give and v with the solutionw of a finite element method

the correct solution. obtained with MATLAB's PDE toolbox (The Mathworks,
Here, even if the field may become nonzemutsidethe ~ Natick, MA). . _ .
cell (and indeed it dogsthe total concentratioinside the In Fig. 1(a) we show the spatial profile of the phase field

cell remains constant. In fact, the solution for long times oftogether with the exact solution at a given time. It can be
Eq. (2) [together with phase-field E¢l)] is u(x)=A where  seen that the agreement is excellent, with a relative error
the constani is determined through 2A= [dx¢u(t=0). of less than 1%see i_nse)t In Fig. 1(b) we show the fields .
The long time solution of the original sharp-interface prob-Uu, v, andw at three different points. Again the agreement is

lem is of courseu(x)=A= [ dxu(t=0)/(2a). Because ©xcellent.

#=1 inside the domain ang=0 outside, the erraf in the In view of these promising results, let us now consider
long time solution depends solely on the amount of concendifiusion in presence of a production term and damping. In-

ration initially near the interf S~ [TaHE gy cludingasource.term at the i_nterface is relatively easy. We
tratio ially near the interfacesi€~J.,_;dxau(t add to the right-hand side of Eqg.2) a term

=0)/2a. Since ¢ is an antisymmetric function around the ~ o) r a2 o - _
interface, the error is minimal if we take in the phase-fieldP(V ¢)7Jdx(V ). The factor ¥ ¢#)* ensures that it only
approach an initial condition(t=0) which is locally sym-  acts at the interface and the denominator is a normalization

metric around the boundary. factor. We also include a damping term of the form
This raises the following important point. While the solu- — #¢U. The equation of motion then becomes
tion u outside the cell is not of physical interest, it is essential

PRy
to keep track of it. In practice we solve E@®) where the 9 —V.[DéVUul— i (Vo) 4
phase field¢ exceeds a small threshold (typically & at(¢u) V:[D¢Vul=pgutb sy @
~1079). dx(Ve)

As a first test for our model we now solve E&) numeri-
cally in two space dimensions. For the phase field we takélote that this equation still bears some similarity with the
here one-sided solidification mod¢9].

We have compared the phase-field method with these two

1 1 supplementary ingredients with the finite element method,
o(r)= §+ Etanr((ro—r)/g), 3 again in the case of a two-dimensional circular cell wigh
=5. As can be seen in Fig. 2 the result is excellent.

We now use our phase-field method to solve a biological
wherer is the radius in polar coordinates. In the case of amodel for the response of a Dictyostelium amoeba following
radially symmetric initial condition we can compare the field stimulation with the chemoattractant cAMB]. In recent
u to the analytic solutiom which is expressed in terms of the experiments the establishment of an asymmetry within a few
Bessel functions seconds after the rise of extracellular cAMP was demon-
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| ' | decay spontaneously to the quiescent state at fasesl B+ ,

u l‘sf"pf'"fe ] respectively. The equations for the membrane state variables
15 are thus
Ipq _
1 W__CVCPq"'BfPi_ﬁrqua (5
ap
0.5 a
W:acpq_ Opa, (6)
0 L 1 n | L I
0 0.02 0.04 0.06 ap;
! W:_,pri"',grgpq"'épa- (7)

FIG. 2. Comparison of our phase-field model with finite element

".‘e”“?d. W'th source and damping. We have take.n th.e same System o reactants cGMP and cAMP diffuse, respectively, in-
size, initial conditions, and parameter values as in Fig. 1, and now

b=1000 andu=50. We show here the time evolution of the con- side and outside the' gell. At the membrane they satisfy zero-
centration atr=5, r=4.05, andr=0.86. The curves are again flux boqndary conditions. There is a source term for the
hardly distinguishable. We plot the error,—ur, for r=5 [the pGMP field that accounts for the p_roductlon of cGMP at the
worst point of Fig. 18)] as a function of time. As one can see in the INterface. Both cAMP and cGMP fields are damped at rates
inset, the error goes initially rapidly up to around 1.5%, but de-#c and ug. The phase-field method is thus well suited to
creases then to aroundx@L0™2% . solve the dynamical equations for the cAMP and cGMP con-
centrations. For the phase-field corresponding to the cAMP

strated[10]. The cAMP however diffuses rapidly around the (Which diffuses outside the cglve simply take the comple-
cell and the applied signal is several orders of magnitudénent of ¢ given by Eq.(3): ¢.=1—¢. The equations for
larger than the value required to elicit a response. Thighe membrane variables are solved on all lattice sites where
strongly suggests the presence of an inhibitory mechanisi{V ¢)2 exceeds a certain threshold, namely; 10
that suppresses responses at the back. We now present a comparison of the phase-field approach
In Ref.[8] an abstract model for the initial response of theand the results obtained with a finite element method in Ref.
cell to the chemoattractant was proposed: it was supposdd]. A circular cell of diameter 1Qum is placed in a square
that the membrane can be characterized in terms of thredomain of 30umx30 um. The diffusion constants of
states, quiescer{with density p,), activated(with density cAMP and cGMP were taken to be identicd =D
pa), and inhibitedwith densityp;). Initially the entire mem- =250 um?/s. The values of the other parameters can be
brane is in the quiescent state. As the CAMP reaches the fromg¢ad in the caption of Fig. 3.
of the cell the membrane becomes activated at rate In order to mimic the asymmetric cAMP stimulus we
a[ cAMP] and an inhibitor, in Ref[8] suggested to be cyclic maintain the cAMP concentration at a value well above
guanosine monophosphateGMP), is produced(at rate threshold at the upper left corner of our domain. As expected
og¢pa)- The inhibitor diffuses toward the back of cell where from our earlier results the agreement of the cAMP fields,
it turns the membrane from quiescent to inhibited with ratewhich solely diffuse around the cell, is excellent, see Fig.
B [cGMP]. Furthermore both activated and inhibited state3(a). We observe a slight discrepancy for the cGMP field

(;a) T T T 0.4 p T " (l?) T T
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FIG. 3. Comparison of our phase-field model with finite element method in the chemotaxis t@d#EMP concentration at front
(upper curvesand cAMP at backlower curve$ (in rescaled unitsof the cell as a function of timén seconds(b) state variablep, at front
and back of the cell as a function of tinfie seconds In the finite element method the grid consists of 216 nodes inside thételthich
40 are on the interfageand 543 on the outsid@f which again 40 are on the interfac@he grid and also the mass and stiffness matrices
were generated byaTLAB’s PDE toolbox(The Mathworks, Natick, MAafter which the equations of motion are integrated witDRTRAN
code. The time step is taken to hé=2x10"°. In the phase-field method the equations of motion are integrated on>alBa1grid, the
lattice spacing thus beingx=0.2. Here the time step is taken to A¢=10"5. We have taken the following parameter valuas:4,
B:=0.01, 3,=0.533,5=0.1, u=0, uy=0.12, andoy=60 000.
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[also Fig. 3a)], which grows with time. This is related to the
larger difference(of around 10% for the membrane vari-
ables, the production of cGMP being proportionapta The
origin of the discrepancy might lie in the way the state vari-
ables are calculated: on a ring of finite width in the phase-
field model, and on 40 points on the interface in the finite
element method. At any rate, since the model is of a quite
abstract nature and since its predictions are only qualitative
a detailed investigation is beyond the scope of this paper.

From a computational perspective, we note that in the
phase-field method the CPU time required is linear in the
number of lattice sites whereas it is quadratic in the numbe
of nodes in the finite element method. One thus expects thg
phase-field method to be much faster. However this naivg
result must be taken with some caution as in the finite ele
ment method the nodes are not distributed uniformly in
space. To resolve some particular region in space with hig
accuracy we are thus obliged to take a small lattice spacing
in the phase-field method, such that the number of lattice
points exceeds the number of nodes. Other parameters that ;5 4 The cAMP concentration, represented by gray levels

will aﬁec_t the aqcuracy Qf both mgthods arg the time $ep _(where white corresponds to large concentrations and black to low
and the integration algorithm. Again a detailed comparison igneg is for visual simplicity shown at the back of the box and is
beyond the scope of the Report. In practice it turns out thagimilar to the cAMP field surrounding the cell. The activity density
the phase-field method where the lattice spacing is equal tf the membrane is shown on the sphere, also represented by gray
the minimal distance between two nodes of our finite ele{evels. It is seen that whereas the cCAMP has reached the back of the
ment method is about one order of magnitude faster. cell, it has not become activated. The equations of motion are inte-
Finally, we turn to the chemotaxis model in three spacegrated on a 6X61x61 grid, the lattice spacing thus beingx
dimensions. For the sake of simplicity we take a spherical-0.5. Here the time step is taken to he=10"“. These results
cell, i.e., with a phase-field such as in E§) but wherer is  have been obtained for the same parameters as in Fig. 3. Only the
now the radius in spherical coordinates. We consider again production term has been increased in order to account for the in-
cell of radiusro=5 um, in a box of dimensions 3030  crease in membrane surface.
X 30 um. Now the stimulus is applied by setting the cAMP

initially well above threshold at one side of the box, here|ems, the only task being to generate a phase ffelEven
taken to bex=—15 um. As is illustrated in Fig. 4, the phe- petter, our approach can in principle be extended to deal with
nomenology of the two-dimensional case is reproduced hergyonstationary boundaries. This situation arises in a multitude
As the cAMP front progresses toward the back of the cellsf piological problems. For example, the Dictyostelium cells
only the front of the cell is activated. _ change their shape continuously during chemotaxis. Another
In conclusion, we have proposed a phase-field model fopyample is shape transformations observed in vedisla4].
intra- and extracellular dynamics. Our method is shown to bg these cases, the phase field becomes a dynamic variable
very accurate, easy to implement, and computationally ine€Xgat evolves under the appropriate Ginzburg-Landau type of

with respect to other methods, such as the finite elemerfagearch.

method. We revisited a chemotaxis model and, when consid-

ering three-dimensional cells, we reach the same conclusions This work was supported by the NSF sponsored Center
as in Ref.[8] for two-dimensional cells. Whereas we have for Theoretical Biological Physics(Grant Nos. PHY-
restricted ourselves to circular and spherical domains, th8216576 and 022563@nd the NSF Biocomplexity program
extension to other geometrical forms poses no major probtGrant No. MCB 0083704
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