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Computational approach for modeling intra- and extracellular dynamics
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We introduce a phase-field approach for diffusion inside and outside a closed cell with damping and with
source terms at the stationary interface. The method is compared to exact solutions~where possible! and the
more traditional finite element method. It is shown to be very accurate, easy to implement, and computationally
inexpensive. We apply our method to a recently introduced model for chemotaxis by Rappelet al. @Biophys. J.
83, 1361~2002!#.
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In dealing with free boundary problems, the so call
phase-field approach@1# appears as a method of choice.
has successfully been applied to various problems ran
from dendritic solidification@2#, viscous fingering@3#, crack
propagation@4#, the tumbling of vesicles@5#, and the propa-
gation of electrical waves in the heart@6#. In the spirit of
time-dependent Ginzburg-Landau models, the method av
the tracking of the interface by introducing an auxiliary fie
that locates the interface and whose dynamics is couple
the other physical fields through an appropriate set of pa
differential equations. In comparison to the more traditio
boundary integral methods, the method is much simple
implement numerically.

In this Brief Report we introduce a phase-field model
intra- and extracellular dynamics, i.e., diffusion inside a
outside a stationary, closed domain with source terms at
interface. We apply the method to a recently introduc
model for the response of a Dictyostelium amoeba@7# fol-
lowing stimulation with the chemoattractant cyclic adenos
monophosphate~cAMP! @8#. In Ref. @8#, due to the need to
use a finite element method the numerical implementatio
the model was limited to two space dimensions and the c
were treated as disks. As we will see below, the phase-fi
method is capable of faithfully capturing no-flux bounda
conditions. Thus, it becomes feasible to investigate more
alistic cell shapes in three dimensions.

Before we introduce our approach, we like to point o
some possible extensions of our methodology. The ph
field approach can be modified to include problems wh
the domain boundary is not stationary. For example, fo
generation on cell membranes, leading to shape changes
in principle be incorporated within the phase-field approa
This would require adding an additional equation for t
phase field, but does not require the explicit calculation o
boundary. We should stress that attempting to model
type of problem using conventional techniques, with expl
boundary tracking, becomes quite cumbersome.

Let us first introduce the most salient ingredients of o
method. Our purpose is to describe the situation where s
chemoattractant diffuses only inside the cell, i.e., its conc
tration c obeys the following diffusion equation inside
closed domain:
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and satisfies zero-flux boundary conditions

n̂•¹W c50.

As a phase-field we take a function that takes the valuef in
51 inside the cell andfout50 outside the domain and var
ies smoothly across the interface. A possible choice in
dimension for a cell betweenx52a andx5a is

f~x!5
1

2
1

1

2
tanh@~a2uxu!/j#. ~1!

The variablej denotes the interface width. We then define
field u that is to obey the equation

]

]t
~fu!5¹W •@Df¹W u#. ~2!

We will come back to the rationale for the factorf on the
left-hand side. From here on we will be concerned with sta
profiles]f/]t50, unless stated otherwise.

Our claim is now that inside the domain the fieldu be-
haves very similarly toc. Let us therefore first show, fo
simplicity in one dimension, that in the sharp interface lim
one recovers the no-flux boundary condition. Integration
Eq. ~2! over the interface yields

E
a2j

a1j

dxf
]u

]t
'2D

]u

]x U
x5a2j

sincef(a2j)'1 andf(a1j)'0. From this we deduce

]u

]x U
x5a

;j

and thus, in the sharp interface limitj→0, the reflective
boundary conditions are recovered.

For a moving boundary the appropriate boundary con
tions areD(]u/]t)ux5a(t)52(da/dt)u. A generalization of
the argument above wheref is time dependent gives
D(]u/]x)ux5a(t)52(da/dt)u1O(j). Thus, also in the case
of moving boundaries the appropriate boundary conditio
are recovered in the sharp-interface limit.

On the other hand it is also clear that, whether the bou
aries are moving or not,u satisfies the diffusion equatio
inside the domain wheref is constant.
©2003 The American Physical Society02-1
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FIG. 1. Comparison of our phase-field model with both analytic solution and finite element method. The equations are solved
of size 2013201 with Euler’s method, withD5250, r 055, Dx50.1, andDt5531026. The initial condition isc511cos(pr/r0). ~a!
Spatial profile respectively att50.004, t50.01, andt50.02 of the phase-field and analytic solution. Since the curves are hardly d
guishable, we mark the analytic solution by small circles and plot the difference of the profiles att50.01 in the inset. The relative error o
the phase field is seen to be smaller than 1%, being maximal at the boundary.~b! Time evolution of the concentration atr 55, r 53.37, and
r 51.66. The analytic solution is again marked by small circles.
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Another interesting property of Eq.~2! is that the quantity
*fudxW , which can be interpreted as the total concentrat
inside the cell, is conserved under the dynamics. This is
reason for the presence of the factorf on the left-hand side
of Eq. ~2!, which is absent in one-sided phase-field model
solidification@9#. In fact, without this factor,*udxW would be
conserved but sinceu leaks out of the cell, this does not giv
the correct solution.

Here, even if the fieldu may become nonzerooutsidethe
cell ~and indeed it does!, the total concentrationinside the
cell remains constant. In fact, the solution for long times
Eq. ~2! @together with phase-field Eq.~1!# is u(x)5A where
the constantA is determined through 2aA5*dxfu(t50).
The long time solution of the original sharp-interface pro
lem is of courseu(x)5Ã5*2a

a dxu(t50)/(2a). Because
f51 inside the domain andf50 outside, the errorE in the
long time solution depends solely on the amount of conc
tration initially near the interfaces:E'*6a2j

6a1j dxfu(t
50)/2a. Sincef is an antisymmetric function around th
interface, the error is minimal if we take in the phase-fie
approach an initial conditionu(t50) which is locally sym-
metric around the boundary.

This raises the following important point. While the sol
tion u outside the cell is not of physical interest, it is essen
to keep track of it. In practice we solve Eq.~2! where the
phase fieldf exceeds a small thresholdd ~typically d
;1028).

As a first test for our model we now solve Eq.~2! numeri-
cally in two space dimensions. For the phase field we t
here

f~r !5
1

2
1

1

2
tanh„~r 02r !/j…, ~3!

where r is the radius in polar coordinates. In the case o
radially symmetric initial condition we can compare the fie
u to the analytic solutionv which is expressed in terms of th
Bessel functions
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v~r ,t !5(
n

anJn~lnr !e2ln
2t,

where ln is defined as the smallest number for whi
Jn(lna)50 andan is the projection of the initial condition
on the set of Bessel functions. We also compare both fieldu
and v with the solution w of a finite element method
obtained with MATLAB ’s PDE toolbox ~The Mathworks,
Natick, MA!.

In Fig. 1~a! we show the spatial profile of the phase fie
together with the exact solution at a given time. It can
seen that the agreement is excellent, with a relative e
of less than 1%~see inset!. In Fig. 1~b! we show the fields
u, v, andw at three different points. Again the agreement
excellent.

In view of these promising results, let us now consid
diffusion in presence of a production term and damping.
cluding a source term at the interface is relatively easy.
add to the right-hand side of Eq.~2! a term
b(¹W f)2/*dxW (¹W f)2. The factor (¹W f)2 ensures that it only
acts at the interface and the denominator is a normaliza
factor. We also include a damping term of the form
2mfu. The equation of motion then becomes

]

]t
~fu!5¹W •@Df¹W u#2mfu1b

~¹W f!2

E dxW~¹W f!2

. ~4!

Note that this equation still bears some similarity with t
one-sided solidification model@9#.

We have compared the phase-field method with these
supplementary ingredients with the finite element meth
again in the case of a two-dimensional circular cell withr 0
55. As can be seen in Fig. 2 the result is excellent.

We now use our phase-field method to solve a biologi
model for the response of a Dictyostelium amoeba follow
stimulation with the chemoattractant cAMP@8#. In recent
experiments the establishment of an asymmetry within a
seconds after the rise of extracellular cAMP was dem
2-2
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strated@10#. The cAMP however diffuses rapidly around th
cell and the applied signal is several orders of magnit
larger than the value required to elicit a response. T
strongly suggests the presence of an inhibitory mechan
that suppresses responses at the back.

In Ref. @8# an abstract model for the initial response of t
cell to the chemoattractant was proposed: it was suppo
that the membrane can be characterized in terms of t
states, quiescent~with density rq), activated~with density
ra), and inhibited~with densityr i). Initially the entire mem-
brane is in the quiescent state. As the cAMP reaches the f
of the cell the membrane becomes activated at
a@cAMP# and an inhibitor, in Ref.@8# suggested to be cyclic
guanosine monophosphate~cGMP!, is produced~at rate
sgra). The inhibitor diffuses toward the back of cell whe
it turns the membrane from quiescent to inhibited with r
b r@cGMP#. Furthermore both activated and inhibited sta

FIG. 2. Comparison of our phase-field model with finite elem
method with source and damping. We have taken the same sy
size, initial conditions, and parameter values as in Fig. 1, and
b51000 andm550. We show here the time evolution of the co
centration atr 55, r 54.05, andr 50.86. The curves are agai
hardly distinguishable. We plot the errorup f2uf e for r 55 @the
worst point of Fig. 1~a!# as a function of time. As one can see in th
inset, the error goes initially rapidly up to around 1.5%, but d
creases then to around 631022%.
03770
e
is
m

ed
ee

nt
te

e

decay spontaneously to the quiescent state at ratesd andb f ,
respectively. The equations for the membrane state varia
are thus

]rq

]t
52acrq1b fr i2b rgrq , ~5!

]ra

]t
5acrq2dra , ~6!

]r i

]t
52b fr i1b rgrq1dra . ~7!

The reactants cGMP and cAMP diffuse, respectively,
side and outside the cell. At the membrane they satisfy ze
flux boundary conditions. There is a source term for t
cGMP field that accounts for the production of cGMP at t
interface. Both cAMP and cGMP fields are damped at ra
mc and mg . The phase-field method is thus well suited
solve the dynamical equations for the cAMP and cGMP c
centrations. For the phase-field corresponding to the cA
~which diffuses outside the cell! we simply take the comple
ment of f given by Eq.~3!: fc512f. The equations for
the membrane variables are solved on all lattice sites wh
(¹W f)2 exceeds a certain threshold, namely, 1024.

We now present a comparison of the phase-field appro
and the results obtained with a finite element method in R
@7#. A circular cell of diameter 10mm is placed in a square
domain of 30mm330 mm. The diffusion constants o
cAMP and cGMP were taken to be identical:Dc5Dg
5250 mm2/s. The values of the other parameters can
read in the caption of Fig. 3.

In order to mimic the asymmetric cAMP stimulus w
maintain the cAMP concentration at a value well abo
threshold at the upper left corner of our domain. As expec
from our earlier results the agreement of the cAMP fiel
which solely diffuse around the cell, is excellent, see F
3~a!. We observe a slight discrepancy for the cGMP fie

t
em
w

-

t

ces
FIG. 3. Comparison of our phase-field model with finite element method in the chemotaxis model.~a! cGMP concentration at fron
~upper curves! and cAMP at back~lower curves! ~in rescaled units! of the cell as a function of time~in seconds! ~b! state variablesra at front
and back of the cell as a function of time~in seconds!. In the finite element method the grid consists of 216 nodes inside the cell~of which
40 are on the interface! and 543 on the outside~of which again 40 are on the interface!. The grid and also the mass and stiffness matri
were generated byMATLAB ’s PDE toolbox~The Mathworks, Natick, MA! after which the equations of motion are integrated with aFORTRAN

code. The time step is taken to beDt5231026. In the phase-field method the equations of motion are integrated on a 1513151 grid, the
lattice spacing thus beingDx50.2. Here the time step is taken to beDt51025. We have taken the following parameter values:a54,
b f50.01, b r50.533,d50.1, mc50, mg50.12, andsg560 000.
2-3
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@also Fig. 3~a!#, which grows with time. This is related to th
larger difference~of around 10%! for the membrane vari-
ables, the production of cGMP being proportional tora . The
origin of the discrepancy might lie in the way the state va
ables are calculated: on a ring of finite width in the pha
field model, and on 40 points on the interface in the fin
element method. At any rate, since the model is of a q
abstract nature and since its predictions are only qualitat
a detailed investigation is beyond the scope of this pape

From a computational perspective, we note that in
phase-field method the CPU time required is linear in
number of lattice sites whereas it is quadratic in the num
of nodes in the finite element method. One thus expects
phase-field method to be much faster. However this na
result must be taken with some caution as in the finite e
ment method the nodes are not distributed uniformly
space. To resolve some particular region in space with h
accuracy we are thus obliged to take a small lattice spa
in the phase-field method, such that the number of lat
points exceeds the number of nodes. Other parameters
will affect the accuracy of both methods are the time stepDt
and the integration algorithm. Again a detailed compariso
beyond the scope of the Report. In practice it turns out t
the phase-field method where the lattice spacing is equa
the minimal distance between two nodes of our finite e
ment method is about one order of magnitude faster.

Finally, we turn to the chemotaxis model in three spa
dimensions. For the sake of simplicity we take a spher
cell, i.e., with a phase-field such as in Eq.~3! but wherer is
now the radius in spherical coordinates. We consider aga
cell of radius r 055 mm, in a box of dimensions 30330
330 mm. Now the stimulus is applied by setting the cAM
initially well above threshold at one side of the box, he
taken to bex5215 mm. As is illustrated in Fig. 4, the phe
nomenology of the two-dimensional case is reproduced h
As the cAMP front progresses toward the back of the c
only the front of the cell is activated.

In conclusion, we have proposed a phase-field model
intra- and extracellular dynamics. Our method is shown to
very accurate, easy to implement, and computationally in
pensive. Another advantage lies in its much greater flexibi
with respect to other methods, such as the finite elem
method. We revisited a chemotaxis model and, when con
ering three-dimensional cells, we reach the same conclus
as in Ref.@8# for two-dimensional cells. Whereas we ha
restricted ourselves to circular and spherical domains,
extension to other geometrical forms poses no major pr
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example is shape transformations observed in vesicles@5,11#.
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FIG. 4. The cAMP concentration, represented by gray lev
~where white corresponds to large concentrations and black to
ones! is for visual simplicity shown at the back of the box and
similar to the cAMP field surrounding the cell. The activity dens
of the membrane is shown on the sphere, also represented by
levels. It is seen that whereas the cAMP has reached the back o
cell, it has not become activated. The equations of motion are i
grated on a 61361361 grid, the lattice spacing thus beingDx
50.5. Here the time step is taken to beDt51024. These results
have been obtained for the same parameters as in Fig. 3. Onl
production term has been increased in order to account for the
crease in membrane surface.
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